Chapter 2 Diffusion in dilute solutions

1. Water evaporation

To find the rate of evaporation, we need to find the flux of water across the air film:

$$
j_{1}=\frac{D H}{\ell} \Delta c_{1}
$$

Since the film is made up of air, $H=1$. We are given D and ℓ, so we need to find Δc_{1}. We first calculate the difference in the partial pressure of water across the film. From a steam table we find that at $20^{\circ} \mathrm{C}, p_{\text {sat }}=2.3388 \mathrm{kPa}$. Since the air immediately above the water is saturated we have:

$$
\Delta p_{1}=p_{\text {sat }}-0.5 p_{\text {sat }}=0.5 p_{\text {sat }}=0.5(2.3388 \mathrm{kPa})=1.1694 \mathrm{kPa}=1169.4 \mathrm{~Pa}
$$

Assuming an ideal gas, we can find the concentration difference:

$$
\Delta c_{1}=\frac{\Delta p_{1}}{R T}=\frac{1169.4 \mathrm{~Pa}}{\left(8.3145 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}}\right)(293 \mathrm{~K})}=0.48 \frac{\mathrm{~mol}}{\mathrm{~m}^{3}}=4.8 \cdot 10^{-7} \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}}
$$

We can now calculate the flux:

$$
j_{1}=\frac{0.25 \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}}{0.15 \mathrm{~cm}}\left(4.8 \cdot 10^{-7} \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}}\right)=8.0 \cdot 10^{-7} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}}
$$

To find the height change, we divide by the molar density of water:

$$
\frac{8.0 \cdot 10^{-7} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}}}{1 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \cdot \frac{1 \mathrm{~mol}}{18.015 \mathrm{~g}}}=1.44 \cdot 10^{-5} \frac{\mathrm{~cm}}{\mathrm{~s}}=1.25 \frac{\mathrm{~cm}}{\mathrm{day}}
$$

2. Diffusion across a monolayer

Recalling that the resistance is the inverse of the permeance, we have:

$$
\frac{1}{P}=2 \frac{\mathrm{~s}}{\mathrm{~cm}} \Rightarrow P=0.5 \frac{\mathrm{~cm}}{\mathrm{~s}}
$$

We know that the permeance is given by:

$$
P=\frac{D H}{\ell} \Rightarrow D=\frac{P \ell}{H}=\frac{\left(0.5 \frac{\mathrm{~cm}}{\mathrm{~s}}\right)\left(2.5 \cdot 10^{-7} \mathrm{~cm}\right)}{0.018}=7 \cdot 10^{-6} \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}
$$

3. Diffusion coefficient of NO_{2} in water

We treat the water as a semiinfinite slab. From Eq. (2.3-18) we know that the flux at the surface is given by:

$$
\left.j_{1}\right|_{z=0}=\sqrt{\frac{D}{\pi t}}\left(c_{10}-c_{1 \infty}\right)
$$

The concentration at the surface is given by Henry's Law:

$$
c_{10}=\frac{p}{H}=\frac{0.93 \mathrm{~atm}}{37000 \frac{\mathrm{~cm}^{3} \mathrm{~atm}}{\mathrm{~mol}}}=2.5 \cdot 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}}
$$

Since we have a semiinfinite slab we assume $c_{1 \infty 0}=0$. To find the flux over the total time t, we integrate:

$$
N_{1}=\left.\int_{0}^{t} A j_{1}\right|_{z=0} d t=A \int_{0}^{t} \sqrt{\frac{D}{\pi t}}\left(c_{10}-0\right) d t=A c_{10} \sqrt{\frac{D}{\pi}} \int_{0}^{t} \frac{d t}{\sqrt{t}}=2 A c_{10} \sqrt{\frac{D}{\pi}}[\sqrt{t}]_{0}^{t}=2 A c_{10} \sqrt{\frac{D t}{\pi}}
$$

Assuming an ideal gas, the flux N_{l} is given by:

$$
N_{1}=\frac{P V}{R T}=\frac{(0.93 \mathrm{~atm})\left(0.82 \mathrm{~cm}^{3}\right)}{\left(82.06 \frac{\mathrm{~cm}^{3} \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{~mol}}\right)(289 \mathrm{~K})}=3.2 \cdot 10^{-5} \mathrm{~mol}
$$

Solving for D, we have:

$$
D=\left(\frac{N_{1}}{2 A c_{10}}\right)^{2} \cdot \frac{\pi}{t}=\left[\frac{3.2 \cdot 10^{-5} \mathrm{~mol}}{\left(36.3 \mathrm{~cm}^{2}\right)\left(2.5 \cdot 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}}\right)}\right]^{2} \cdot \frac{\pi}{180 \mathrm{~s}}=5.4 \cdot 10^{-6} \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}
$$

4. Permeability of water across a polymer film

The rate of water loss can be found by linear regression or by simply using the first and last data points:

$$
N_{1}=\frac{14.0153 \mathrm{~g}-13.5256 \mathrm{~g}}{16 \text { days }}=0.031 \frac{\mathrm{~g}}{\text { day }}
$$

The molar flux is given by:

$$
j_{1}=\frac{N_{1}}{A}=\frac{0.031 \frac{\mathrm{~g}}{d a y} \cdot \frac{1 \mathrm{~mol}}{18.015 \mathrm{~g}} \cdot \frac{1 \text { day }}{24 \mathrm{hr}} \cdot \frac{1 \mathrm{hr}}{3600 \mathrm{~s}}}{85.6 \mathrm{~cm}^{2}}=2.3 \cdot 10^{-10} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}}
$$

From Eq. (2-2.10) we have:

$$
j_{1}=\frac{D H}{\ell} \Delta c_{1}
$$

We need to find Δc_{l}. We first calculate the difference in the partial pressure of water across the film. From a steam table we find that at $35^{\circ} \mathrm{C}, p_{\text {sat }}=0.0555 \mathrm{~atm}$. Since the air inside the bag is saturated, we have:

$$
\Delta p_{1}=p_{\text {sat }}-0.75 p_{\text {sat }}=0.25 p_{\text {sat }}=0.25(0.0555 \mathrm{~atm})=0.0139 \mathrm{~atm}
$$

Assuming an ideal gas, the concentration difference is:

$$
\Delta c_{1}=\frac{\Delta p_{1}}{R T}=\frac{0.0139 \mathrm{~atm}}{\left(82.06 \frac{\mathrm{~cm}^{3} \mathrm{~atm}}{K \cdot \mathrm{~mol}}\right)(308 \mathrm{~K})}=5.49 \cdot 10^{-7} \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}}
$$

The permeability $D H$ is given by:

$$
D H=\frac{j_{1} \ell}{\Delta c_{1}}=\frac{\left(2.3 \cdot 10^{-10} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}}\right)(0.051 \mathrm{~cm})}{5.49 \cdot 10^{-7} \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}}}=2.1 \cdot 10^{-5} \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}
$$

5. Diaphragm cell

From Ex. (2.2-4) we have:

$$
D=\frac{1}{\beta t} \ln \left(\frac{\Delta c_{10}}{\Delta c_{1}}\right) \quad \beta=\frac{A H}{\ell}\left(\frac{1}{V_{\text {lower }}}+\frac{1}{V_{\text {upper }}}\right)
$$

(a) Using the first equation and solving for β we have:

$$
\begin{aligned}
\beta & =\frac{1}{D t} \ln \left(\frac{\Delta c_{10}}{\Delta c_{1}}\right)=\frac{1}{\left(1.859 \cdot 10^{-5} \frac{\mathrm{~cm}^{2}}{s}\right)\left(36 \mathrm{hr} \cdot \frac{3600 s}{\mathrm{hr}}+6 \min \cdot \frac{60 s}{\min }\right)} \ln \left(\frac{1}{0.492}\right) \\
& =0.294 \mathrm{~cm}^{-2}
\end{aligned}
$$

(b) Using the second equation and solving for ℓ we have:

$$
\ell=\frac{A H}{\beta}\left(\frac{1}{V_{\text {lower }}}+\frac{1}{V_{\text {upper }}}\right)=\frac{\left[\frac{\pi}{4}(2.51 \mathrm{~cm})^{2}\right](0.34)}{0.294 \mathrm{~cm}^{-2}}\left(\frac{1}{42.3 \mathrm{~cm}^{3}}+\frac{1}{40.8 \mathrm{~cm}^{3}}\right)=0.276 \mathrm{~cm}
$$

(c) Since the porosity is the same, the result is the same.

6. Measuring diffusion coefficient of gases

The maximum concentration will be at the center of the pipe so $r=0$ and the equation reduces to:

$$
c_{1}=\frac{Q}{4 \pi D z}
$$

Dimensional analysis tells us that the concentration must be dimensionless, so we simply convert it from a weight fraction w_{l} to a mole fraction y_{l} :

$$
w_{1}=\frac{4 y_{1}}{4 y_{1}+28\left(1-y_{1}\right)} \Rightarrow \frac{1}{w_{1}}=\frac{7}{y_{1}}-6 \Rightarrow y_{1}=\frac{7}{\frac{1}{w_{1}}+6}=\frac{7}{\frac{1}{0.0048}+6}=0.033=c_{1}
$$

Solving for D, we have:

$$
D=\frac{Q}{4 \pi c_{1} z}=\frac{0.045 \frac{\mathrm{~cm}^{3}}{s}}{4 \pi(0.033)(1.031 \mathrm{~cm})}=0.11 \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}
$$

7. Carburizing of steel

Rearranging Eq. (2.3-15) we have:

$$
c_{1}=c_{10}-\left(c_{1 \infty}-c_{10}\right) \operatorname{erf}\left(\frac{z}{\sqrt{4 D t}}\right)
$$

Since this is a semiinfinite slab, $c_{l \infty}=0$. Assuming the argument of the error function is small (i.e. less than about 0.7), we can approximate it as the argument itself:

$$
c_{1} \approx c_{10}-\frac{c_{10} z}{\sqrt{4 D t}}
$$

Using the data for 10 hr we calculate the slope from its endpoints:

$$
m=\frac{0.7-1.35}{(0.05-0) \mathrm{in} \cdot \frac{2.54 \mathrm{~cm}}{\mathrm{in}}}=5.12 \mathrm{~cm}^{-1}
$$

The data show that the concentration c_{l} at 10 hr is given by:

$$
c_{1}=1.35-5.12 z
$$

By comparison with our approximation we have:

$$
\begin{aligned}
& c_{10}=1.35 \\
& \frac{c_{10}}{\sqrt{4 D t}}=5.12
\end{aligned}
$$

Solving for D gives:

$$
D=\frac{\left(\frac{c_{10}}{5.12}\right)^{2}}{4 t}=\frac{\left(\frac{1.35}{5.12 \mathrm{~cm}^{-1}}\right)^{2}}{4\left(10 \mathrm{hr} \cdot \frac{3600 \mathrm{~s}}{\mathrm{hr}}\right)}=4.8 \cdot 10^{-7} \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}
$$

To check whether our approximation was valid, we calculate the argument of the error function:

$$
\frac{z}{\sqrt{4 D t}}=\frac{0.05 \mathrm{in} \cdot \frac{2.54 \mathrm{~cm}}{\text { in }}}{\sqrt{4\left(4.8 \cdot 10^{-7} \frac{\mathrm{~cm}^{2}}{s}\right)\left(10 \mathrm{hr} \cdot \frac{3600 \mathrm{~s}}{\mathrm{hr}}\right)}}=0.48
$$

The assumption is valid.

8. Twin-bulb method

We define the direction of positive flux is from bulb A into bulb B . A balance on bulb A gives:

$$
V \frac{d c_{1 A}}{d t}=-\left(\pi r^{2}\right) j_{1}
$$

Similarly for bulb B we have:

$$
V \frac{d c_{1 B}}{d t}=\left(\pi r^{2}\right) j_{1}
$$

Subtracting the second equation from the first, we get:

$$
V \frac{d}{d t}\left(c_{1 A}-c_{1 B}\right)=-2 \pi r^{2} j_{1}
$$

The flux is given by:

$$
j_{1}=\frac{D H}{\ell}\left(c_{1 A}-c_{1 B}\right)
$$

In this case $H=1$ since there is no interface. Combining these equations and substituting Δc_{l} for $c_{1 A}-c_{I B}$ we have:

$$
V \frac{d \Delta c_{1}}{d t}=-\frac{2 \pi D \Delta c_{1} r^{2}}{\ell} \Rightarrow \frac{d \Delta c_{1}}{c_{1}}=-\frac{2 \pi D r^{2}}{\ell V} d t
$$

Integration gives:

$$
\int_{\Delta c_{10}}^{\Delta c_{1}} \frac{d \Delta c_{1}}{\Delta c_{1}}=-\frac{2 \pi D r^{2}}{\ell V} \int_{0}^{t} d t \Rightarrow \ln \left(\frac{\Delta c_{1}}{\Delta c_{10}}\right)=-\frac{2 \pi D r^{2} t}{\ell V} \Rightarrow \Delta c_{1}=\Delta c_{10} e^{-\frac{2 \pi D r^{2} t}{\ell V}}
$$

9. Steady-state flux out of a pipe with porous wall

From Eq. (2.4-29) we have:

$$
\frac{\partial c_{1}}{\partial t}=\frac{D}{r} \frac{\partial}{\partial r}\left(r \frac{\partial c_{1}}{\partial r}\right)
$$

Since we are at steady state, the time derivative is zero and we are left with:

$$
0=\frac{D}{r} \frac{d}{d r}\left(r \frac{d c_{1}}{d r}\right) \Rightarrow \frac{d}{d r}\left(r \frac{d c_{1}}{d r}\right)=0
$$

Integrating twice we have:

$$
r \frac{d c_{1}}{d r}=A \Rightarrow \int d c_{1}=A \int \frac{d r}{r} \Rightarrow c_{1}=A \ln r+B
$$

This is subject to boundary conditions:

$$
\begin{array}{ll}
r=R_{i} & c=c_{1 i} \\
r=R_{0} & c=0
\end{array}
$$

Applying the second and then the first we have:
$0=A \ln R_{0}+B \Rightarrow B=-A \ln R_{0}$

$$
c_{1 i}=A \ln R_{i}+B=A \ln R_{i}-A \ln R_{0}=A \ln \frac{R_{i}}{R_{0}} \Rightarrow A=\frac{c_{1 i}}{\ln \frac{R_{i}}{R_{0}}}
$$

$$
B=-A \ln R_{0}=-\frac{c_{1 i} \ln R_{0}}{\ln \frac{R_{i}}{R_{0}}}
$$

Substitution gives:

$$
c_{1}=\frac{c_{1 i} \ln r}{\ln \frac{R_{i}}{R_{o}}}-\frac{c_{1 i} \ln R_{0}}{\ln \frac{R_{i}}{R_{0}}}=c_{1 i} \frac{\ln \frac{r}{R_{0}}}{\ln \frac{R_{i}}{R_{0}}}
$$

The flux at the outside of the pipe is given by Fick's Law:

$$
j=-\left.D \frac{d c_{1}}{d r}\right|_{r=R_{0}}=-\frac{D c_{1 i}}{\left.r \ln \frac{R_{i}}{R_{0}}\right|_{r=R_{0}}=\frac{D c_{1 i}}{R_{0} \ln \frac{R_{0}}{R_{i}}}, \frac{r_{1}}{}}
$$

10. Controlled release of pheromones

From a balance on the device we have:

$$
V \frac{d c_{1}}{d t}=r_{0}-A j_{1}
$$

Since we are interested in the steady state case, the time derivative is 0 and we find that the rate of sublimation must equal the rate of transport through the membrane. Substituting for r_{0} and j_{1} we have:

$$
r_{0}=A j_{1} \Rightarrow 6 \cdot 10^{-17}\left[1-\left(1.1 \cdot 10^{7} \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}\right) c_{1}\right] \frac{\mathrm{mol}}{\mathrm{~s}}=\frac{A D H}{\ell}\left(c_{1}-0\right)
$$

(a) Solving for c_{l} we have:

$$
\begin{aligned}
c_{1} & =\frac{6 \cdot 10^{-17} \frac{\mathrm{~mol}}{\mathrm{~s}}}{\frac{A D H}{\ell}+6.6 \cdot 10^{-10} \frac{\mathrm{~cm}^{3}}{\mathrm{~s}}}=\frac{6 \cdot 10^{-17} \frac{\mathrm{~mol}}{\mathrm{~s}}}{\frac{\left(1.8 \mathrm{~cm}^{2}\right)\left(1.92 \cdot 10^{-12} \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}\right)}{0.06 \mathrm{~cm}}+6.6 \cdot 10^{-10} \frac{\mathrm{~cm}^{3}}{\mathrm{~s}}} \\
& =8.4 \cdot 10^{-8} \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}}
\end{aligned}
$$

(b) Solving for r_{0} or $A j_{1}$ gives:

$$
A j_{1}=\frac{A D H}{\ell} c_{1}=\frac{\left(1.8 \mathrm{~cm}^{2}\right)\left(1.92 \cdot 10^{-12} \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}\right)}{0.06 \mathrm{~cm}}\left(8.4 \cdot 10^{-8} \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}}\right)=4.8 \cdot 10^{-18} \frac{\mathrm{~mol}}{\mathrm{~s}}
$$

11. Measuring age of antique glass

Based on Example 2.3-3, we have:

$$
\left.j_{1}\right|_{z=0}=\sqrt{\frac{D(1+K)}{\pi t}}\left(c_{10}-c_{1 \infty}\right)
$$

Since the water is consumed as it enters the glass, we assume that $c_{1 \infty}=0$. The total hydration is
then:

$$
N_{1}=\left.A \int_{0}^{t} j_{1}\right|_{z=0} d t=A c_{10} \sqrt{\frac{D(1+K)}{\pi}} \int_{0}^{t} \frac{d t}{\sqrt{t}}=2 A c_{10} \sqrt{\frac{D t(1+K)}{\pi}}
$$

Solving for t we have:

$$
t=\frac{\pi}{D(1+K)}\left(\frac{N_{1}}{2 A c_{10}}\right)
$$

12. Diffusion in a reactive barrier membrane
(a) Mass balances on mobile species 1 and immobile species 2 give:

$$
\begin{aligned}
& \frac{\partial c_{1}}{\partial t}=D \frac{\partial^{2} c_{1}}{\partial z^{2}}-k_{R} c_{1} c_{2} \\
& \frac{\partial c_{2}}{\partial t}=-k_{R} c_{1} c_{2}
\end{aligned}
$$

(b) The boundary conditions for this situation are:

$$
\begin{array}{llll}
t<0 & \text { all } z & c_{1}=0 & c_{2}=c_{20} \\
t \geq 0 & z=0 & c_{1}=H c_{10} & \frac{\partial c_{2}}{\partial z}=0 \\
& z=\ell & c_{1}=0 & \frac{\partial c_{2}}{\partial z}=0
\end{array}
$$

(c) The reaction term would exist only in a front, moving across the film with time. Everywhere else in the film either c_{1} or c_{2} is zero and the reaction term drops out of the differential equations.

13. Diffusion of dopant in arsenide

From Eq. (2.4-14) we have:

$$
c_{1}=\frac{M / A}{\sqrt{4 \pi D t}} e^{-\frac{z^{2}}{4 D t}}
$$

Since the maximum concentration will be at $z=0$ i.e. the site of the scratch we can write:

$$
c_{1 \max }=\frac{M / A}{\sqrt{4 \pi D t}} \Rightarrow \frac{c_{1}}{c_{1 \max }}=e^{-\frac{z^{2}}{4 D t}}
$$

Solving for t, we have:

$$
t=\frac{z^{2}}{4 D \ln \left(\frac{c_{1 \max }}{c_{1}}\right)}=\frac{\left(4 \cdot 10^{-4} \mathrm{~cm}\right)^{2}}{4\left(10^{-11} \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}\right) \ln (10)}=1740 \mathrm{~s}=29 \mathrm{~min}
$$

14. Concentration profile in Fick's experiment

(a) For the cylinder, the cross sectional area A is constant. Since the experiment is at steady state, j_{l} is also constant. Using Fick's Law, we have:

$$
j=-D \frac{d c_{1}}{d z}=B \Rightarrow c_{1}=-\frac{B}{D} z+C
$$

The boundary conditions are:

$$
\begin{array}{ll}
z=0 & c_{1}=0 \\
z=\ell & c_{1}=c_{1 s a t}
\end{array}
$$

The first boundary condition tells us that $C=0$. Applying the second gives:

$$
c_{1 s a t}=-\frac{B}{D} \ell \Rightarrow B=-\frac{c_{1 s t a} D}{\ell} \Rightarrow c_{1}=c_{1 \text { sat }} \frac{z}{\ell}
$$

(b) For the funnel, the cross sectional area A is not constant. The area at height z is given by:

$$
A=\pi\left(R_{0}+\frac{R_{\ell}-R_{0}}{\ell} z\right)^{2}=\pi\left(R_{0}+k z\right)^{2} \quad k=\frac{R_{\ell}-R_{0}}{\ell}
$$

where k has been defined for convenience. Since the area is a function of z, the condition of steady state requires that the product $A j_{1}$ be constant. As a result we have:
$0=\frac{d\left(A j_{1}\right)}{d z}=j_{1} \frac{d A}{d z}+A \frac{d j_{1}}{d z}$
Using Fick's Law to substitute for j_{l} and the above expression for A we have:

$$
\begin{aligned}
& 0=\left[-D \frac{d c_{1}}{d z}\right]\left[2 \pi k\left(R_{0}+k z\right)\right]+\left[\pi\left(R_{0}+k z\right)^{2}\left[-D \frac{d^{2} c_{1}}{d z^{2}}\right]\right. \\
& 0=2 k \frac{d c_{1}}{d z}+\left(R_{0}+k z\right) \frac{d^{2} c_{1}}{d z^{2}}
\end{aligned}
$$

We now define a function u and redefine our differentials in terms of it:

$$
\begin{aligned}
& u=R_{0}+k z \\
& \frac{d c_{1}}{d z}=\frac{d c_{1}}{d u} \frac{d u}{d z}=k \frac{d c_{1}}{d u} \\
& \frac{d^{2} c_{2}}{d z^{2}}=\frac{d^{2} c_{1}}{d u^{2}}\left(\frac{d u}{d z}\right)^{2}=k^{2} \frac{d^{2} c_{1}}{d u^{2}}
\end{aligned}
$$

Our equation now becomes:

$$
0=2 k^{2} \frac{d c_{1}}{d u}+k^{2} u \frac{d^{2} c_{1}}{d u^{2}} \Rightarrow u^{2} \frac{d^{2} c_{1}}{d u^{2}}+2 u \frac{d c_{1}}{d u}=0
$$

This equation is of the Euler-Cauchy form, which means the solution is of the form

$$
c_{l}=u^{m}:
$$

$$
u^{2}\left[m(m-1) u^{m-2}\right]+2 u\left(m u^{m-1}\right)=0 \Rightarrow m^{2}+m=m(m+1)=0 \Rightarrow m=0,-1
$$

The solution is a linear combination of the two roots:
$c_{1}=B+\frac{C}{u}=B+\frac{C}{R_{0}+k z}$
Applying the same boundary conditions as above we find:

$$
\begin{aligned}
& 0=B+\frac{C}{R_{0}} \Rightarrow B=-\frac{C}{R_{0}} \\
& c_{1 s a t}=\frac{C}{R_{0}+k \ell}-\frac{C}{R_{0}} \Rightarrow C=\frac{c_{1 s a t}}{\frac{1}{R_{0}+k \ell}-\frac{1}{R_{0}}}=\frac{c_{1 s a t} R_{0}\left(R_{0}+k \ell\right)}{k \ell}
\end{aligned}
$$

The concentration profile is therefore:

$$
c_{1}=\frac{c_{1 s a t} R_{0}\left(R_{0}+k \ell\right)}{k \ell}\left[\frac{1}{R_{0}+k z}-\frac{1}{R_{0}}\right]=c_{1 s a t} \frac{R_{0}+k \ell}{R_{0}+k z} \frac{z}{\ell}=c_{1 s a t} \frac{R_{\ell} z}{R_{0} \ell+z\left(R_{\ell}-R_{0}\right)}
$$

15. Bacteria between membranes

(a) From Fick's Law we have:

$$
j_{S}=-D \frac{d c_{S}}{d z}
$$

At steady state we know that j_{s} is independent of z :

$$
\frac{d j_{S}}{d z}=0=-D \frac{d^{2} c_{S}}{d z^{2}} \quad \begin{array}{lll}
z=0 & c_{S}=c_{S 0} \\
z=\ell & c_{S}=0
\end{array}
$$

By applying the boundary conditions and integrating twice we have:

$$
j_{S}=\frac{D}{\ell} c_{S 0}
$$

By comparison with Fick's Law we can write:

$$
-D \frac{d c_{S}}{d z}=\frac{D}{\ell} c_{S 0} \Rightarrow \int_{c_{s 0}}^{c_{S}} d c_{S}=-\frac{c_{S 0}}{\ell} \int_{0}^{z} d z \Rightarrow c_{S}=c_{S 0}\left(1-\frac{z}{\ell}\right)
$$

(b) Once again assuming steady state, we know that j_{B} is independent of z. We also know from the boundary conditions that $j_{B}=0$ at $z=0$ and $z=\ell$, so $j_{B}=0$ for all z. The given equation then becomes:

$$
0=-D_{0} \frac{d c_{B}}{d z}+\chi c_{B} \frac{d c_{S}}{d z} \Rightarrow D_{0} \frac{d c_{B}}{d z}=\chi c_{B}\left(-\frac{c_{S 0}}{\ell}\right)
$$

Integration gives:

$$
\int_{c_{B 0}}^{c_{B}} \frac{d c_{B}}{c_{B}}=-\frac{\chi c_{S 0}}{D_{0} \ell} \int_{0}^{z} d z \Rightarrow \ln \frac{c_{B}}{c_{B 0}}=-\frac{\chi c_{S 0} z}{D_{0} \ell} \Rightarrow c_{B}=c_{B 0} e^{-\frac{\chi c_{S 0} z}{D_{0} \ell}}
$$

where $c_{B 0}$ is the concentration of B at $z=0$.

16. Extraction of sucrose

From Eq. (2-3.18) the flux through the surface of a slice is:

$$
j_{1}=\sqrt{\frac{D}{\pi t}} c_{10}
$$

The total flux is a weighted average of the individual fluxes:

$$
j_{1}=\varepsilon j_{c}+(1-\varepsilon) j_{w}=\varepsilon \sqrt{\frac{D_{c}}{\pi t}} c_{10}+(1-\varepsilon) \sqrt{\frac{D_{w}}{\pi t}} c_{10}
$$

Integrating over time to get the total sucrose extracted per unit area we have:

$$
M=\int_{0}^{t} j_{1} d t=\frac{c_{10}}{\sqrt{\pi}} \int_{0}^{t} \varepsilon \sqrt{\frac{D_{c}}{t}}+(1-\varepsilon) \sqrt{\frac{D_{w}}{t}} d t=2 c_{10} \sqrt{\frac{t}{\pi}}\left[\varepsilon \sqrt{D_{c}}+(1-\varepsilon) \sqrt{D_{w}}\right]
$$

From the given expression we have:

$$
D=\frac{\pi}{4 t}\left(\frac{M}{c_{10}}\right)^{2}=\frac{\pi}{4 t}\left(\frac{2 c_{10} \sqrt{\frac{t}{\pi}}\left[\varepsilon \sqrt{D_{c}}+(1-\varepsilon) \sqrt{D_{w}}\right]}{c_{10}}\right)^{2}=\left[\varepsilon \sqrt{D_{c}}+(1-\varepsilon) \sqrt{D_{w}}\right]^{2}
$$

Not sure this answers the question

