CHAPTER 1 Rosenblatt's Perceptron

Problem 1.1

- (1) If $\mathbf{w}^{T}(n)\mathbf{x}(n) > 0$, then y(n) = +1. If also $\mathbf{x}(n)$ belongs to C_{1} , then d(n) = +1. Under these conditions, the error signal is e(n) = d(n) - y(n) = 0and from Eq. (1.22) of the text: $\mathbf{w}(n+1) = \mathbf{w}(n) + \eta e(n)\mathbf{x}(n) = \mathbf{w}(n)$ This result is the same as line 1 of Eq. (1.5) of the text.
- (2) If w^T(n)x(n) < 0, then y(n) = -1. If also x(n) belongs to C₂, then d(n) = -1. Under these conditions, the error signal e(n) remains zero, and so from Eq. (1.22) we have w(n + 1) = w(n)

This result is the same as line 2 of Eq. (1.5).

(3) If $\mathbf{w}^{T}(n)\mathbf{x}(n) > 0$ and $\mathbf{x}(n)$ belongs to C_{2} we have y(n) = +1 d(n) = -1The error signal e(n) is -2, and so Eq. (1.22) yields $\mathbf{w}(n+1) = \mathbf{w}(n) - 2\eta \mathbf{x}(n)$ which has the same form as the first line of Eq. (1.6), except for the scaling factor 2.

(4) Finally if $\mathbf{w}^{T}(n)\mathbf{x}(n) < 0$ and $\mathbf{x}(n)$ belongs to C_{1} , then y(n) = -1 d(n) = +1In this case, the use of Eq. (1.22) yields $\mathbf{w}(n+1) = \mathbf{w}(n) + 2\eta \mathbf{x}(n)$ which has the same mathematical form as line 2 of Eq. (1.6), except for the scaling factor 2.

Problem 1.2

The output signal is defined by

$$y = \tanh\left(\frac{v}{2}\right)$$
$$= \tanh\left(\frac{b}{2} + \frac{1}{2}\sum_{i}w_{i}x_{i}\right)$$

Equivalently, we may write

$$b + \sum_{i} w_{i} x_{i} = y' \tag{1}$$

where

$$y' = 2 \tanh^{-1}(y)$$

Equation (1) is the equation of a hyperplane.

Problem 1.3

<u> </u>	1	
Inputs		Output
<i>x</i> ₁	<i>x</i> ₂	У
1	1	1
0	1	0
1	0	0
0	0	0

(a) AND operation: Truth Table 1

This operation may be realized using the perceptron of Fig. 1

Figure 1: Problem 1.3

The hard limiter input is

$$v = w_1 x_1 + w_2 x_2 + b$$

= $x_1 + x_2 - 1.5$

If $x_1 = x_2 = 1$, then v = 0.5, and y = 1If $x_1 = 0$, and $x_2 = 1$, then v = -0.5, and y = 0If $x_1 = 1$, and $x_2 = 0$, then v = -0.5, and y = 0If $x_1 = x_2 = 0$, then v = -1.5, and y = 0

)

These conditions agree with truth table 1.

Inputs		Output
<i>x</i> ₁	<i>x</i> ₂	у
1	1	1
0	1	1
1	0	1
0	0	0

OR operation: Truth Table 2

The OR operation may be realized using the perceptron of Fig. 2:

Figure 2: Problem 1.3

In this case, the hard limiter input is

 $v = x_1 + x_2 - 0.5$

If $x_1 = x_2 = 1$, then v = 1.5, and y = 1If $x_1 = 0$, and $x_2 = 1$, then v = 0.5, and y = 1If $x_1 = 1$, and $x_2 = 0$, then v = 0.5, and y = 1If $x_1 = x_2 = 0$, then v = -0.5, and y = -1

These conditions agree with truth table 2.

COMPLEMENT operation: Truth Table 3

Input <i>x</i> ,	Output, y
1	0
0	1

The COMPLEMENT operation may be realized as in Figure 3::

The hard limiter input is

v = wx + b = -x + 0.5

If x = 1, then v = -0.5, and y = 0If x = 0, then v = 0.5, and y = 1

These conditions agree with truth table 3.

· · · · · · · · · · · · · · · · · · ·		
Inputs		Output
<i>x</i> ₁	<i>x</i> ₂	У
1	1	0
0	1	1
1	0	1
0	0	0

(b) EXCLUSIVE OR operation: Truth table 4

This operation is nonlinearly separable, which cannot be solved by the perceptron.

Problem 1.4

The Gaussian classifier consists of a single unit with a single weight and zero bias, determined in accordance with Eqs. (1.37) and (1.38) of the textbook, respectively, as follows:

$$w = \frac{1}{\sigma^2}(\mu_1 - \mu_2)$$
$$= -20$$

$$b = \frac{1}{2\sigma^2}(\mu_2^2 - \mu_1^2) = 0$$

Problem 1.5

Using the condition

$$\mathbf{C} = \boldsymbol{\sigma}^2 \mathbf{I}$$

in Eqs. (1.37) and (1.38) of the textbook, we get the following formulas for the weight vector and bias of the Bayes classifier:

$$\mathbf{w} = \frac{1}{\sigma^2} (\mu_1 - \mu_2)$$
$$\mathbf{b} = \frac{1}{2\sigma^2} (\|\mu_1\|^2 - \|\mu_2\|^2)$$