CHAPTER 1
 Rosenblatt's Perceptron

Problem 1.1

(1) If $\mathbf{w}^{T}(n) \mathbf{x}(n)>0$, then $y(n)=+1$.

If also $\mathbf{x}(n)$ belongs to C_{1}, then $d(n)=+1$.
Under these conditions, the error signal is

$$
e(n)=d(n)-y(n)=0
$$

and from Eq. (1.22) of the text:

$$
\mathbf{w}(n+1)=\mathbf{w}(n)+\eta e(n) \mathbf{x}(n)=\mathbf{w}(n)
$$

This result is the same as line 1 of Eq. (1.5) of the text.
(2) If $\mathbf{w}^{T}(n) \mathbf{x}(n)<0$, then $y(n)=-1$.

If also $\mathbf{x}(n)$ belongs to C_{2}, then $d(n)=-1$.
Under these conditions, the error signal $e(n)$ remains zero, and so from Eq. (1.22) we have

$$
\mathbf{w}(n+1)=\mathbf{w}(n)
$$

This result is the same as line 2 of Eq. (1.5).
(3) If $\mathbf{w}^{T}(n) \mathbf{x}(n)>0$ and $\mathbf{x}(n)$ belongs to C_{2} we have

$$
\begin{aligned}
& y(n)=+1 \\
& d(n)=-1
\end{aligned}
$$

The error signal $e(n)$ is -2 , and so Eq. (1.22) yields

$$
\mathbf{w}(n+1)=\mathbf{w}(n)-2 \eta \mathbf{x}(n)
$$

which has the same form as the first line of Eq. (1.6), except for the scaling factor 2.
(4) Finally if $\mathbf{w}^{T}(n) \mathbf{x}(n)<0$ and $\mathbf{x}(n)$ belongs to C_{1}, then

$$
\begin{aligned}
& y(n)=-1 \\
& d(n)=+1
\end{aligned}
$$

In this case, the use of Eq. (1.22) yields

$$
\mathbf{w}(n+1)=\mathbf{w}(n)+2 \eta \mathbf{x}(n)
$$

which has the same mathematical form as line 2 of Eq. (1.6), except for the scaling factor 2 .

Problem 1.2

The output signal is defined by

$$
\begin{aligned}
y & =\tanh \left(\frac{v}{2}\right) \\
& =\tanh \left(\frac{b}{2}+\frac{1}{2} \sum_{i} w_{i} x_{i}\right)
\end{aligned}
$$

Equivalently, we may write

$$
\begin{equation*}
b+\sum_{i} w_{i} x_{i}=y^{\prime} \tag{1}
\end{equation*}
$$

where

$$
y^{\prime}=2 \tanh ^{-1}(y)
$$

Equation (1) is the equation of a hyperplane.

Problem 1.3

(a) AND operation: Truth Table 1

Inputs		Output
x_{1}	x_{2}	y
1	1	1
0	1	0
1	0	0
0	0	0

This operation may be realized using the perceptron of Fig. 1

Figure 1: Problem 1.3

The hard limiter input is

$$
\begin{aligned}
v & =w_{1} x_{1}+w_{2} x_{2}+b \\
& =x_{1}+x_{2}-1.5
\end{aligned}
$$

If $x_{1}=x_{2}=1$, then $v=0.5$, and $y=1$
If $x_{1}=0$, and $x_{2}=1$, then $v=-0.5$, and $y=0$
If $x_{1}=1$, and $x_{2}=0$, then $v=-0.5$, and $y=0$
If $x_{1}=x_{2}=0$, then $v=-1.5$, and $y=0$

These conditions agree with truth table 1.
OR operation: Truth Table 2

Inputs		Output
x_{1}	x_{2}	y
1	1	1
0	1	1
1	0	1
0	0	0

The OR operation may be realized using the perceptron of Fig. 2:

Figure 2: Problem 1.3

In this case, the hard limiter input is
$v=x_{1}+x_{2}-0.5$

If $x_{1}=x_{2}=1$, then $v=1.5$, and $y=1$
If $x_{1}=0$, and $x_{2}=1$, then $v=0.5$, and $y=1$
If $x_{1}=1$, and $x_{2}=0$, then $v=0.5$, and $y=1$
If $x_{1}=x_{2}=0$, then $v=-0.5$, and $y=-1$
These conditions agree with truth table 2.

COMPLEMENT operation: Truth Table 3

Input x,	Output, y
1	0
0	1

The COMPLEMENT operation may be realized as in Figure 3::

Figure 3: Problem 1.3

The hard limiter input is
$v=w x+b=-x+0.5$

If $x=1$, then $v=-0.5$, and $y=0$
If $x=0$, then $v=0.5$, and $y=1$
These conditions agree with truth table 3.
(b) EXCLUSIVE OR operation: Truth table 4

Inputs		Output
x_{1}	x_{2}	y
1	1	0
0	1	1
1	0	1
0	0	0

This operation is nonlinearly separable, which cannot be solved by the perceptron.

Problem 1.4

The Gaussian classifier consists of a single unit with a single weight and zero bias, determined in accordance with Eqs. (1.37) and (1.38) of the textbook, respectively, as follows:

$$
\begin{aligned}
w & =\frac{1}{\sigma^{2}}\left(\mu_{1}-\mu_{2}\right) \\
& =-20
\end{aligned}
$$

$$
\begin{aligned}
b & =\frac{1}{2 \sigma^{2}}\left(\mu_{2}^{2}-\mu_{1}^{2}\right) \\
& =0
\end{aligned}
$$

Problem 1.5

Using the condition
$\mathbf{C}=\sigma^{2} \mathbf{I}$
in Eqs. (1.37) and (1.38) of the textbook, we get the following formulas for the weight vector and bias of the Bayes classifier:

$$
\begin{aligned}
& \mathbf{w}=\frac{1}{\sigma^{2}}\left(\mu_{1}-\mu_{2}\right) \\
& \mathbf{b}=\frac{1}{2 \sigma^{2}}\left(\left\|\mu_{1}\right\|^{2}-\left\|\mu_{2}\right\|^{2}\right)
\end{aligned}
$$

