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Chapter 1: INTRODUCTION

1.1 Newton’s second law can be expressed as

F = ma (1)

where F is the net force acting on the body, m mass of the body, and a the acceleration
of the body in the direction of the net force. Use Eq. (1) to determine the governing
equation of a free-falling body. Consider only the forces due to gravity and the air
resistance, which is assumed to be proportional to the square of the velocity of the
falling body.

Solution: From the free-body-diagram shown in Fig.P1.1 it follows that

m
dv

dt
= Fg − Fd, Fg = mg, Fd = cv2

where v is the downward velocity (m/s) of the body, Fg is the downward force (N or
kg m/s2) due to gravity, Fd is the upward drag force, m is the mass (kg) of the body,
g the acceleration (m/s2) due to gravity, and c is the proportionality constant (drag
coefficient, kg/s). The equation of motion is

dv

dt
+ αv2 = g, α =

c

m

gF mg

dF cv2

v

FigP1-1 

Fig. P1.1

1.2 Consider steady-state heat transfer through a cylindrical bar of nonuniform cross sec-
tion. The bar is subject to a known temperature T0 (◦C) at the left end and exposed,
both on the surface and at the right end, to a medium (such as cooling fluid or air)
at temperature T∞. Assume that temperature is uniform at any section of the bar,
T = T (x), and neglect thermal expansion of the bar (that is, assume rigid). Use the
principle of conservation of energy (which requires that the rate of change (increase)
of internal energy is equal to the sum of heat gained by conduction, convection, and
internal heat generation) to a typical element of the bar (see Fig. P1.2) to derive the
governing equations of the problem.
Solution: If q denotes the heat flux (heat flow per unit area, W/m2), then [Aq]x is
the net heat flow into the volume element at x, [Aq]x+∆x is the net heat flow out
of the volume element at x + ∆x. If h denotes the film conductance [W/(m2·◦C)],
βP∆x(T∞−T ) is the heat flow through the surface of the rod into the body, where T∞
is the temperature of the surrounding medium and P is the perimeter (m). Suppose
that there is a heat source within the rod generating energy at a rate of g (W/m3).
Then the energy balance gives

[Aq]x − [Aq]x+∆x + βP ∆x(T∞ − T ) + gA∆x = 0 (1)

or, dividing throughout by ∆x,

− [Aq]x+∆x − [Aq]x
∆x

+ βP (T∞ − T ) +Ag = 0
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2 SOLUTIONS MANUAL

and taking the limit ∆x→ 0, we obtain

− d

dx
(Aq) + βP (T∞ − T ) +Ag = 0 (2)

Δx
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FigP1-2

Fig. P1.2

1.3 The Euler–Bernoulli hypothesis concerning the kinematics of bending deformation of
a beam assumes that straight lines perpendicular to the beam axis before deformation
remain (1) straight, (2) perpendicular to the tangent line to the beam axis, and (3)
inextensible during deformation. These assumptions lead to the following displacement
field:

u1(x, y) = −y dv
dx
, u2 = v(x), u3 = 0, (1)

where (u1, u2, u3) are the displacements of a point (x, y, z) along the x, y, and z coor-
dinates, respectively, and v is the vertical displacement of the beam at point (x, 0, 0).
Suppose that the beam is subjected to a distributed transverse load q(x). Determine
the governing equation by summing the forces and moments on an element of the beam
(see Fig. P1.3). Note that the sign conventions for the moment and shear force are
based on the definitions

V =

∫
A

σxy dA, M =

∫
A

y σxx dA,

and may not agree with the sign conventions used in some mechanics of materials books.

Solution: Summation of the forces in the transverse direction on the element of the
beam gives

(V + ∆V )− V + q(x)∆x = 0.

Dividing throughout with ∆x and taking the limit ∆x→ 0 gives

dV

dx
+ q = 0. (2)

Taking the moment of forces about the right end of the element, we obtain∑
Mz = 0 : −V∆x−M + (M + ∆M) + q∆x · α∆x = 0,

where α is a number 0 ≤ α ≤ 1. Again, dividing throughout with ∆x and taking the
limit ∆x→ 0 gives

dM

dx
− V = 0. (3)
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Note that V and M denote the shear force and bending moment on the entire cross
section, and they have the meaning

M(x) =

∫
A

σxxy dA, V (x) =
dM

dx
.

Here A denotes the area of cross section. The stress resultants (V,M) can be related to
the deflection v. Using the linear elastic constitutive relation for an isotropic material

σxx = Eεxx = E

(
−y d

2v

dx2

)
.

Substituting into the definition of M , we obtain

M(x) =

∫
A

σxxy dA = E

∫
A

(
−y d

2v

dx2

)
y dA = −EI d

2v

dx2
, (4)

where I is the moment of inertia about the axis of bending (z−axis). Then

V = − d

dx

(
EI

d2v

dx2

)
. (5)

Equations (2)-(5) can be combined to obtain the following fourth-order equation for v:

d2

dx2

(
EI

d2v

dx2

)
= q(x). (6)

1.4 A cylindrical storage tank of diameter D contains a liquid column height h(x, t). Liquid
is supplied to the tank at a rate of qi (m3/day) and drained at a rate of q0 (m3/day).
Assume that the fluid is incompressible (that is, constant mass density ρ) and use the
principle of conservation of mass to obtain a differential equation governing h(x, t).

Solution: The conservation of mass requires

time rate of change in mass = mass inflow - mass outflow.
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4 SOLUTIONS MANUAL

The above statement for the problem at hand becomes

d

dt
(ρAh) = ρqi − ρq0 or

d(Ah)

dt
= qi − q0,

where A is the area of cross section of the tank (A = πD2/4) and ρ is the mass density
of the liquid.

1.5 (Surface tension). Forces develop at the interface between two immiscible liquids,
causing the interface to behave as if it were a membrane stretched over the fluid mass.
Molecules in the interior of the fluid mass are surrounded by molecules that are at-
tracted to each other, whereas molecules along the surface (that is, inside the imaginary
membrane) are subjected a net force toward the interior. This force imbalance creates a
tensile force in the membrane and is called surface tension (measured per unit length).
Let the difference between the pressure inside the drop and the external pressure be
p and the surface tension ts. Determine the relation between p and ts for a spherical
drop of radius R.

Solution: Consider the free-body-diagram of of a half drop of liquid, as shown in Fig.
P1.5. The force due to p is p(πR2), whereas the force in the surface is ts(2πR). The
force balance requires

p(πR2) = ts(2πR) ⇒ p =
2ts
R

.

R
p

st

FigP1-5

Fig. P1.5
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Chapter 2: VECTORS AND TENSORS

2.1 Find the equation of a line (or a set of lines) passing through the terminal point of a
vector A and in the direction of vector B.
FigP2-1
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Fig. P2.1

Solution: Let C be a vector along the line passing through the terminal point of vector
A and parallel to vector B. Let r be the position vector to an arbitrary point on the
line parallel to vector B and passing through the terminal point of vector A. Then the
desired equation of the line is (see Fig. P2.1)

r = A + C = A + β êB, êB =
B

|B| ,

where β is a real number.

2.2 Obtain the equation of a plane perpendicular to a vector A and passing through the
terminal point of vector B, without using any coordinate system.

FigP2-2 
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Solution: Let O be the origin and B the terminal point of vector B. Draw a directed
line segment from O to Q, such that OQ is parallel to vector A and point Q is in the
plane, as shown in Fig. P2.2. Then OQ is equal to αA, where α is a scalar. Let P be
an arbitrary point on the line BQ. If the position vector of the point P is r, then the
vector connecting points B and P is

BP = r−B.

Because BP is perpendicular to OQ = αA, we must have

BP ·OQ = 0 ⇒ (r−B) ·A = 0,
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which is the required equation of the plane.

2.3 Find the equation of a plane connecting the terminal points of vectors A, B, and C.
Assume that all three vectors are referred to a common origin.

Solution: Let r denote the position vector. The vectors connecting the terminal points
of vectors A, B, C, and r should be in the plane. Thus, for example, the scalar triple
product of the vectors B−A, C−A, and r−A should be zero in order that they are
co-planar, as shown in Fig. P2.3:

(C−A)× (B−A) · (r−A) = 0 [or eijk(Ci −Ai)(Bj −Aj)(xk −Ak) = 0]

For example, if A = ê1, B = ê2, and C = ê3, then the equation of the plane is
−x− y − z + 1 = 0 or x+ y + z = 1.
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Fig. P2.3

2.4 Let A and B denote two points in space, and let these points be represented by two
vectors A and B with a common origin O, as shown in Fig. P2.4. Show that the
straight line through points A and B can be represented by the vector equation

(r−A)× (B−A) = 0.

Solution: Here we use the fact that when two vectors are parallel their vector product
is zero. Because the vectors r−A and B−A are parallel, their vector product should
be zero, giving the required result.

FigP2-5 
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2.5 Prove with the help of vectors that the diagonals of a parallelogram bisect each other.

Solution: Consider the parallelogram formed by points O, A, C, and B, as shown in
Fig. P2.5. Let us denote the line segment connecting O to A as vector A, O to B as
vector B, O to C as vector C, and B to A as vector D. Suppose that vectors C and
D intersect and cross at distances αC and βD. Then we have the following relations
among the four vectors:

A = αC + (1− β)D; A = βD + (1− α)C (1)
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B = αC− βD; B = (1− α)C− (1− β)D (2)

From each pair of equations, we obtain the same result, namely, α = β = 0.5, implying
that vectors C and D bisect each other.

FigP2-6 
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2.6 Show that the position vector r that divides a line PQ in the ratio k : l is given by

r =
l

k + l
A +

k

k + l
B,

where A and B are the vectors that designate points P and Q, respectively.

Solution: Let R denote the point on line PQ where the position vector divides it in the
ratio k : l, as shown in Fig. P2.6, and let ê denote the unit vector along the line. Then
we have the relations

A + k ê = r, B = r + l ê.

To eliminate ê from the equations, we multiply the first one with l and the second one
with k and add the result to obtain

lA + kl ê + kB = (l + k)r + lk ê or r =
l

k + l
A +

k

k + l
B,

which is the desired result.

FigP2-7 
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8 SOLUTIONS MANUAL

2.7 Represent a tetrahedron by the three non-coplanar vectors A, B, and C, as shown in
Fig. P2.7. Show that the vectorial sum of the areas of the tetrahedron sides is zero.

Solution: Recall the fact that the cross product A×B vectorially represents the area of
the parallelogram formed by the two vectors, which is half the area of the face formed
by vectors A and B of the tetrahedron. Thus, we can write the vector sum of the areas
of the four faces (with normal coming out of each face) as

A×B + B×C + C×A + (C−A)× (B−A) ,

which is zero because terms cancel out.

FigP2-8 

A
ê
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2.8 Deduce that the vector equation for a sphere with its center located at point A and
with a radius R is given by

(r−A) · (r−A) = R2,

where A is the vector connecting the origin to point A and r is the position vector.

Solution: The required result follows from the fact that r − A is the radius vector,
whose magnitude is R, as shown in Fig. P2.8.

FigP2-9 
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2.9 Verify that the following identity holds (without using index notation):

(A ·B)2 + (A×B) · (A×B) = |A|2 |B|2,

where A and B are arbitrary vectors. Hint: Use Eqs. (2.2.21) and (2.2.25).

Solution: Let C = A×B, and consider the expression

(A×B) · (A×B) = C · (A×B) = A · (B×C), (1)

where we used the identity in Eq. (2.2.21). Then using Eq. (2.2.25), we can write

B×C = B× (A×B) = (B ·B)A− (B ·A)B. (2)
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