https://80383yab.m/solution=manual/fundamentals-of-photonics-by-baha-saleh/

home /	tudy / science / physics / calculus based physics / calculus based a	bycics colutions	huals / fundamentals of photonias /	and edition			
iome / s	ookvab ir@omail com F		- 9893595420		legram WhatsApr		
Für	ndamentals of Photonic	s (2nd E	dition)	, , , , , , , , , , , , , , , , , , , ,	Post a question Answers from our experts for your tough		
See	this solution in the app				homework questions		
	Chapter 2.2, Problem 1E	1 Bookmark	Show all steps: 🔵 ом		Enter question		
	Step-by-step		Continue to post				
	Step 1 of 3				9 questions remaining		
	Validity of the Fresnel Approximation: The validation criterion for a spherical wave to be a circle of radius <i>a</i> and it is originated at a distance		Snap a photo from your phone to post a question We'll send you a one-time download link				
	Write the validation condition of the radius of the cir $a^4 \ll 4z^3\lambda$ (1)	cle.			By providing your phone number, you agree to receive a one-time automated text message with a link to get the app. Standard messaging rates may apply.		
	Here, <i>a</i> is the radius of the circle, <i>z</i> is the distance	e from the axis a	nd λ is the wavelength.				
	Comment				My Textbook Solutions		
	Step 2 of	3					
	Calculate the maximum possible radius of the circle	9.			Fundamental Fundamental Partial		
	Substitute 633 nm for λ and 1 m for z in equation	ion (1).			s of s of Differential 2nd Edition 6th Edition 0th Edition		
	$a^4 \ll 4(1 \text{ m})^3 (633 \text{ nm}) \left(\frac{10^{-9} \text{ m}}{1 \text{ nm}} \right)$				View all solutions		
	<i>a</i> << 0.0398 m						
	Thus, the radius of the circle is 0.0398 m .						
	Write the equation for the maximum angle.						
	$\theta_{\rm m} = \frac{a}{z}$						
	Here, $\theta_{\rm m}$ is the maximum angle.						
	Substitute 0.0398 m for a and 1 m for z .						
	$\theta_{\rm m} = \frac{0.0398 \text{ m}}{1 \text{ m}}$						
	= 0.0398 rad						
	Thus, the required angle is 0.0398 rad .						
	Comment						
	Step 3 of	3					
	Write the equation for the Fresnel number.						
	$N_{\rm F} = \frac{a^2}{a}$						

= 2513.7				
≈ 2514				
Thus, the Fresnel number is 2514 .				
Comment				
Was this solut	ion helpful?	0	0	

See more problems in subjects you study

COMPANY

About Chegg Chegg For Good College Marketing Corporate Development Investor Relations Jobs Join Our Affiliate Program Media Center Site Map

LEGAL & POLICIES

Advertising Choices

Intellectual Property Rights

Global Privacy Policy DO NOT SELL MY INFO

Cookie Notice

Terms of Use

Honor Code

General Policies

Here, $N_{\rm F}$ is the Fresnel number.

Substitute 0.0398 m for a, 1 m for z and 633 nm for λ .

© 2003-2021 Chegg Inc. All rights reserved.

BBB

CHEGG PRODUCTS AND SERVICES

Cheap Textbooks Chegg Coupon Chegg Play Chegg Study Help College Textbooks eTextbooks Flashcards Learn Chegg Math Solver

Inte Thir

Mobile Apps Sell Textbooks Solutions Manual Study 101 Textbook Rental Used Textbooks Digital Access Codes Chegg Money

CHEGG NETWORK

EasyBib Internships.com Thinkful

CUSTOMER SERVICE

Customer Service Give Us Feedback Help with eTextbooks Help to use EasyBib Plus Manage Chegg Study Subscription Return Your Books Textbook Return Policy

