1-1. A force of 80 N is supported by the bracket as shown. Determine the resultant internal loadings acting on the section through point A.

SOLUTION

Equations of Equilibrium:

$$
{ }^{+} \nearrow \Sigma F_{x^{\prime}}=0 ; \quad N_{A}-80 \cos 15^{\circ}=0
$$

$$
N_{A}=77.3 \mathrm{~N}
$$

$$
\nwarrow^{+} \Sigma F_{y^{\prime}}=0 ; \quad V_{A}-80 \sin 15^{\circ}=0
$$

$$
V_{A}=20.7 \mathrm{~N}
$$

Ans.
$\zeta+\Sigma M_{A}=0 ; \quad M_{A}+80 \cos 45^{\circ}\left(0.3 \cos 30^{\circ}\right)$

$$
-80 \sin 45^{\circ}\left(0.1+0.3 \sin 30^{\circ}\right)=0
$$

Ans.

$$
M_{A}=-0.555 \mathrm{~N} \cdot \mathrm{~m}
$$

Ans.
or
$\zeta+\Sigma M_{A}=0 ; \quad M_{A}+80 \sin 15^{\circ}\left(0.3+0.1 \sin 30^{\circ}\right)$

$$
-80 \cos 15^{\circ}\left(0.1 \cos 30^{\circ}\right)=0
$$

$$
M_{A}=-0.555 \mathrm{~N} \cdot \mathrm{~m}
$$

Ans.
Negative sign indicates that M_{A} acts in the opposite direction to that shown on FBD.

These solutions represent a preliminary version of the Instructors' Solutions Manual (ISM). It is possible and even likely that at this preliminary stage of preparing the ISM there are some omissions and errors in the draft solutions. These will be corrected and this manual will be republished.

Ans:

$N_{A}=77.3 \mathrm{~N}, V_{A}=20.7 \mathrm{~N}, M_{A}=-0.555 \mathrm{~N} \cdot \mathrm{~m}$

1-2.
Determine the resultant internal loadings on the cross section at point D.

SOLUTION

Support Reactions: Member $B C$ is the two force member.
$\varsigma+\Sigma M_{A}=0 ; \quad \frac{4}{5} F_{B C}(1.5)-1.875(0.75)=0$

$$
F_{B C}=1.1719 \mathrm{kN}
$$

$$
+\uparrow \Sigma F_{y}=0 ; \quad A_{y}+\frac{4}{5}(1.1719)-1.875=0
$$

$$
A_{y}=0.9375 \mathrm{kN}
$$

$\xrightarrow{+} \Sigma F_{x}=0 ; \quad \frac{3}{5}(1.1719)-A_{x}=0$

$$
A_{x}=0.7031 \mathrm{kN}
$$

Equations of Equilibrium: For point D

$$
\begin{array}{cc}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{D}-0.7031=0 \\
& N_{D}=0.703 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; & 0.9375-0.625-V_{D}=0 \\
& V_{D}=0.3125 \mathrm{kN}
\end{array}
$$

$\varsigma_{\hookrightarrow}+\Sigma M_{D}=0 ; \quad M_{D}+0.625(0.25)-0.9375(0.5)=0$
$M_{D}=0.3125 \mathrm{kN} \cdot \mathrm{m}$

Ans.

Ans.

Ans.

Ans:
$N_{D}=0.703 \mathrm{kN}$,
$V_{D}=0.3125 \mathrm{kN}$,
$M_{D}=0.3125 \mathrm{kN} \cdot \mathrm{m}$

1-3.
Determine the resultant internal loadings at cross sections at points E and F on the assembly.

SOLUTION

Support Reactions: Member $B C$ is the two-force member.

$$
\begin{gathered}
\varsigma+\Sigma M_{A}=0 ; \quad \frac{4}{5} F_{B C}(1.5)-1.875(0.75)=0 \\
F_{B C}=1.1719 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; \quad A_{y}+\frac{4}{5}(1.1719)-1.875=0 \\
A_{y}=0.9375 \mathrm{kN} \\
\xrightarrow[\rightarrow]{ } \Sigma F_{x}=0 ; \quad \frac{3}{5}(1.1719)-A_{x}=0 \\
A_{x}=0.7031 \mathrm{kN}
\end{gathered}
$$

Equations of Equilibrium: For point F

$$
\begin{array}{cc}
+\swarrow \Sigma F_{x^{\prime}}=0 ; & N_{F}-1.1719=0 \\
& N_{F}=1.17 \mathrm{kN} \\
\nwarrow+\Sigma F_{y^{\prime}}=0 ; & V_{F}=0 \\
\varsigma+\Sigma M_{F}=0 ; & M_{F}=0
\end{array}
$$

Equations of Equilibrium: For point E

$$
\begin{gathered}
\pm \Sigma F_{x}=0 ; \quad N_{E}-\frac{3}{5}(1.1719)=0 \\
N_{E}=0.703 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; \quad V_{E}-0.625+\frac{4}{5}(1.1719)=0 \\
V_{E}=-0.3125 \mathrm{kN} \\
\varsigma+\Sigma M_{E}=0 ; \quad-M_{E}-0.625(0.25)+\frac{4}{5}(1.1719)(0.5)=0 \\
M_{E}=0.3125 \mathrm{kN} \cdot \mathrm{~m}
\end{gathered}
$$

Ans.
Ans.
Ans.

Ans.

Ans.

Ans.

Negative sign indicates that \mathbf{V}_{E} acts in the opposite direction to that shown on FBD.

> Ans:
> $N_{F}=1.17 \mathrm{kN}$,
> $V_{F}=0$
> $M_{F}=0$
> $N_{E}=0.703 \mathrm{kN}$,
> $V_{E}=-0.3125 \mathrm{kN}$,
> $M_{E}=0.3125 \mathrm{kN} \cdot \mathrm{m}$

*1-4.

The shaft is supported by a smooth thrust bearing at A and a smooth journal bearing at B. Determine the resultant internal loadings acting on the cross section at C.

SOLUTION

Support Reactions: We will only need to compute \mathbf{B}_{y} by writing the moment equation of equilibrium about A with reference to the free-body diagram of the entire shaft, Fig. a.
$\varsigma+\Sigma M_{A}=0 ; \quad B_{y}(4.5)-600(2)(2)-900(6)=0 \quad B_{y}=1733.33 \mathrm{~N}$
Internal Loadings: Using the result of \mathbf{B}_{y}, section $C D$ of the shaft will be considered. Referring to the free-body diagram of this part, Fig. b,
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad N_{C}=0$
$+\uparrow \Sigma F_{y}=0 ; \quad V_{C}-600(1)+1733.33-900=0 \quad V_{C}=-233 \mathrm{~N}$
$\varsigma+\Sigma M_{C}=0 ; \quad 1733.33(2.5)-600(1)(0.5)-900(4)-M_{C}=0$

$$
M_{C}=433 \mathrm{~N} \cdot \mathrm{~m}
$$

Ans.
Ans.

Ans.
The negative sign indicates that \mathbf{V}_{C} acts in the opposite sense to that shown on the free-body diagram.

(a)

(b)

> Ans:
> $N_{C}=0$,
> $V_{C}=-233 \mathrm{~N}$, $M_{C}=433 \mathrm{~N} \cdot \mathrm{~m}$

1-5. Determine the resultant internal loadings in the beam at cross sections through points D and E. Point E is just to the right of the $15-\mathrm{kN}$ load.

SOLUTION

Support Reactions: For member $A B$

$$
\begin{array}{lcc}
\mathrm{C}+\Sigma M_{B}=0 ; & 50(4 / 3)-A_{y}(4)=0 & A_{y}=16.67 \mathrm{kN} \\
\xrightarrow{+} \Sigma F_{x}=0 ; & B_{x}=0 & \\
+\uparrow \Sigma F_{y}=0 ; & B_{y}+16.67-50=0 & B_{y}=33.33 \mathrm{kN}
\end{array}
$$

Equations of Equilibrium: For point D

$$
\begin{array}{lc}
\stackrel{+}{\rightarrow} \Sigma F_{x}=0 ; & N_{D}=0 \\
+\uparrow \Sigma F_{y}=0 ; & 16.67-12.5-V_{D}=0 \\
& V_{D}=4.17 \mathrm{kN} \\
C+\Sigma M_{D}=0 ; & M_{D}+12.25\left(\frac{2}{3}\right)-16.67(2)=0 \\
& M_{D}=25.17 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.

Ans.

Ans.
Equations of Equilibrium: For point E

$$
\begin{array}{lc}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{E}=0 \\
+\uparrow \Sigma F_{y}=0 ; & -33.33-15-V_{E}=0 \\
& V_{E}=-48.33 \mathrm{kN} \\
C+\Sigma M_{E}=0 ; & M_{E}+33.33(1.5)=0 \\
& M_{E}=-50.00 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.

Ans.

Ans.

Negative signs indicate that M_{E} and V_{E} act in the opposite direction to that shown on FBD.

> Ans:
> $N_{D}=0, V_{D}=4.17 \mathrm{kN}$,
> $M_{D}=25.0 \mathrm{kN} \cdot \mathrm{m}, N_{E}=0, V_{E}=-48.3 \mathrm{kN}$,
> $M_{E}=-50.0 \mathrm{kN} \cdot \mathrm{m}$

1-6. The shaft is supported by a smooth thrust bearing at B and a journal bearing at C. Determine the resultant internal loadings acting on the cross section at E.

SOLUTION

Support Reactions: We will only need to compute \mathbf{C}_{y} by writing the moment equation of equilibrium about B with reference to the free-body diagram of the entire shaft, Fig. a.
$\varsigma+\Sigma M_{B}=0 ; \quad C_{y}(2)+1800(1)-3600(3)=0 \quad C_{y}=4500 \mathrm{~N}$

Internal Loadings: Using the result for \mathbf{C}_{y}, section $D E$ of the shaft will be considered. Referring to the free-body diagram, Fig. b,
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad N_{E}=0$
$+\uparrow \Sigma F_{y}=0 ; \quad V_{E}+4500-3600=0 \quad V_{E}=-900 \mathrm{~N}$
$\varsigma+\Sigma M_{E}=0 ; 4500(1)-3600(2)-M_{E}=0$

$$
M_{E}=-2700 \mathrm{~N} \cdot \mathrm{~m}=-2.70 \mathrm{kN} \cdot \mathrm{~m}
$$

Ans.
Ans.

Ans.

The negative signs indicates that \mathbf{V}_{E} and \mathbf{M}_{E} act in the opposite sense to that shown on the free-body diagram.

(b)

Ans:

$N_{E}=0, V_{E}=-900 \mathrm{~N}, M_{E}=-2.7 \mathrm{kN} \cdot \mathrm{m}$

1-7. Determine the resultant internal normal and shear force in the member at (a) section $a-a$ and (b) section $b-b$, each of which passes through point A. The $2000-\mathrm{N}$ load is applied along the centroidal axis of the member.
(a)

$$
\begin{array}{ll}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{a}-2000=0 \\
& N_{a}=2000 \mathrm{~N} \\
+\downarrow \Sigma F_{y}=0 ; & V_{a}=0
\end{array}
$$

(b)

$$
\begin{array}{ll}
\searrow^{+} \Sigma F_{x}=0 ; & N_{b}-2000 \cos 30^{\circ}=0 \\
& N_{b}=1732 \mathrm{~N} \\
+\nearrow \Sigma F_{y}=0 ; & V_{b}-2000 \sin 30^{\circ}=0 \\
& V_{b}=1000 \mathrm{~N}
\end{array}
$$

Ans.

Ans.

Ans.

Ans.

Ans:
$N_{a}=2000 \mathrm{~N}, V_{a}=0$,
$N_{b}=1732 \mathrm{~N}, V_{b}=1000 \mathrm{~N}$

*1-8.

The floor crane is used to lift a $600-\mathrm{kg}$ concrete pipe. Determine the resultant internal loadings acting on the cross section at G .

SOLUTION

Support Reactions: We will only need to compute $\mathbf{F}_{E F}$ by writing the moment equation of equilibrium about D with reference to the free-body diagram of the hook, Fig. a.
$\zeta+\Sigma M_{D}=0 ; \quad F_{E F}(0.3)-600(9.81)(0.5)=0 \quad F_{E F}=9810 \mathrm{~N}$
Internal Loadings: Using the result for $\mathbf{F}_{E F}$, section $F G$ of member $E F$ will be considered. Referring to the free-body diagram, Fig. b,

$$
\begin{array}{lcc}
+ \\
\rightarrow \\
F_{x} & =0 ; & 9810-N_{G}=0
\end{array} \quad N_{G}=9810 \mathrm{~N}=9.81 \mathrm{kN} \quad \begin{gathered}
\text { Ans. } \\
+\uparrow \Sigma F_{y}=0 ;
\end{gathered} \quad V_{G}=0 \quad \text { Ans. }
$$

(b)

Ans:

$N_{G}=9.81 \mathrm{kN}, V_{G}=0, M_{G}=0$

1-9. The floor crane is used to lift a $600-\mathrm{kg}$ concrete pipe. Determine the resultant internal loadings acting on the cross section at H.

SOLUTION

Support Reactions: Referring to the free-body diagram of the hook, Fig. a.

$$
\begin{array}{lll}
C+\Sigma M_{F}=0 ; & D_{x}(0.3)-600(9.81)(0.5)=0 & D_{x}=9810 \mathrm{~N} \\
+\uparrow \Sigma F_{y}=0 ; & D_{y}-600(9.81)=0 & D_{y}=5886 \mathrm{~N}
\end{array}
$$

Subsequently, referring to the free-body diagram of member $B C D$, Fig. b,

$$
\begin{array}{lll}
\mathrm{C}+\Sigma M_{B}=0 ; & F_{A C} \sin 75^{\circ}(0.4)-5886(1.8)=0 & F_{A C}=27421.36 \mathrm{~N} \\
\xrightarrow{+} \Sigma F_{x}=0 ; & B_{x}+27421.36 \cos 75^{\circ}-9810=0 & B_{x}=2712.83 \mathrm{~N} \\
+\uparrow \Sigma F_{y}=0 ; & 27421.36 \sin 75^{\circ}-5886-B_{y}=0 & B_{y}=20601 \mathrm{~N}
\end{array}
$$

Internal Loadings: Using the results of \mathbf{B}_{x} and \mathbf{B}_{y}, section $B H$ of member $B C D$ will be considered. Referring to the free-body diagram of this part shown in Fig. c,

$$
\begin{array}{llll}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{H}+2712.83=0 & N_{H}=-2712.83 \mathrm{~N}=-2.71 \mathrm{kN} & \text { Ans. } \\
+\uparrow \Sigma F_{y}=0 ; & -V_{H}-2060=0 & V_{H}=-20601 \mathrm{~N}=-20.6 \mathrm{kN} & \text { Ans. } \\
\begin{array}{l}
+\Sigma M_{D}=0 ;
\end{array} & M_{H}+20601(0.2)=0 & M_{H}=-4120.2 \mathrm{~N} \cdot \mathrm{~m} & \\
& & & \\
& & -4.12 \mathrm{kN} \cdot \mathrm{~m} & \text { Ans. }
\end{array}
$$

The negative signs indicates that N_{H}, V_{H}, and M_{H} act in the opposite sense to that shown on the free-body diagram. ,
(b)

(a)

1-10.

The beam supports the distributed load shown. Determine the resultant internal loadings acting on the cross section at point C. Assume the reactions at the supports A and B are vertical.

SOLUTION

Support Reactions: Referring to the FBD of the entire beam, Fig. a,
$\varsigma+\Sigma M_{A}=0 ; \quad B_{y}(6)-\frac{1}{2}(4)(6)(2)=0 \quad B_{y}=4.00 \mathrm{kN}$
Internal Loadings: Referring to the FBD of the right segment of the beam sectioned through C, Fig. b,

$$
\begin{array}{ll}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{C}=0 \\
+\uparrow \Sigma F_{y}=0 ; & V_{C}+4.00-\frac{2}{2}(3)(4.5)=0 \quad V_{C}=2.75 \mathrm{kN} \\
\begin{array}{c}
\\
+\Sigma M_{C}=0 ;
\end{array} & 4.00(4.5)-\frac{-}{2}(3)(4.5)(1.5)-M_{C}=0 \\
& M_{C}=7.875 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.

Ans.

Ans.

Ans:
$N_{C}=0$,
$V_{C}=2.75 \mathrm{kN}$,
$M_{C}=7.875 \mathrm{kN} \cdot \mathrm{m}$

1-11.

The beam supports the distributed load shown. Determine the resultant internal loadings acting on the cross section at point D. Assume the reactions at the supports A and B are vertical.

SOLUTION

Support Reactions: Referring to the FBD of the entire beam, Fig. a,
$\varsigma+\Sigma M_{A}=0 ; \quad B_{y}(6)-\frac{1}{2}(4)(6)(2)=0 \quad B_{y}=4.00 \mathrm{kN}$
Internal Loadings: Referring to the FBD of the right segment of the beam sectioned through D, Fig. b,
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad N_{D}=0$
$+\uparrow \Sigma F_{y}=0 ; \quad V_{D}+4.00-\frac{-}{2}(1.00)(1.5)=0 \quad V_{D}=-3.25 \mathrm{kN}$
$\zeta+\Sigma M_{D}=0 ; \quad 4.00(1.5)-\frac{1}{2}(1.00)(1.5)(0.5)-M_{D}=0$

$$
M_{D}=5.625 \mathrm{kN} \cdot \mathrm{~m}
$$

Ans.

Ans.

The negative sign indicates that \mathbf{V}_{D} acts in the sense opposite to that shown on the FBD.

(b)

```
Ans:
\(N_{D}=0\),
\(V_{D}=-3.25 \mathrm{kN}\),
\(M_{D}=5.625 \mathrm{kN} \cdot \mathrm{m}\)
```

*1-12.
The blade of the hacksaw is subjected to a pretension force of $F=100 \mathrm{~N}$. Determine the resultant internal loadings acting on section $a-a$ that passes through point D.

SOLUTION

Internal Loadings: Referring to the free-body diagram of the section of the hacksaw shown in Fig. a,
$\pm \Sigma F_{x}=0 ;$
$N_{a-a}+100=0$
$N_{a-a}=-100 \mathrm{~N}$
$+\uparrow \Sigma F_{y}=0 ;$
$V_{a-a}=0$
$\zeta+\Sigma M_{D}=0 ;$

Ans.
Ans.
Ans.

(a)

Ans:
$N_{a-a}=-100 \mathrm{~N}, V_{a-a}=0, M_{a-a}=-15 \mathrm{~N} \cdot \mathrm{~m}$

1-13.

The blade of the hacksaw is subjected to a pretension force of $F=100 \mathrm{~N}$. Determine the resultant internal loadings acting on section $b-b$ that passes through point D.

SOLUTION

Internal Loadings: Referring to the free-body diagram of the section of the hacksaw shown in Fig. a,

$$
\begin{array}{lll}
\Sigma F_{x^{\prime}}=0 ; & N_{b-b}+100 \cos 30^{\circ}=0 & N_{b-b}=-86.6 \mathrm{~N} \\
\Sigma F_{y^{\prime}}=0 ; & V_{b-b}-100 \sin 30^{\circ}=0 & V_{b-b}=50 \mathrm{~N} \\
\varsigma+\Sigma M_{D}=0 ; & -M_{b-b}-100(0.15)=0 & M_{b-b}=-15 \mathrm{~N} \cdot \mathrm{~m}
\end{array}
$$

Ans.
The negative sign indicates that \mathbf{N}_{b-b} and \mathbf{M}_{b-b} act in the opposite sense to that shown on the free-body diagram.

(a)

> Ans:
> $N_{b-b}=-86.6 \mathrm{~N}, V_{b-b}=50 \mathrm{~N}$,
> $M_{b-b}=-15 \mathrm{~N} \cdot \mathrm{~m}$

1-14. The boom $D F$ of the jib crane and the column $D E$ have a uniform wieght of $750 \mathrm{~N} / \mathrm{m}$. If the hoist and load weigh 1500 N , determine the resultant internal loadings in the crane on cross sections through points A, B, and C.

SOLUTION

Equations of Equilibrium: For point A

$$
\begin{array}{cc}
\pm \Sigma F_{x}=0 ; & N_{A}=0 \\
+\uparrow \Sigma F_{y}=0 ; & V_{A}-0.675-1.500=0 \\
& V_{A}=2.175 \mathrm{kN} \\
C+\Sigma M_{A}=0 ; & -M_{A}-0.675(0.45)-1.500(0.9)=0 \\
& M_{A}=-1.65 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.

Ans.

Ans.
Negative sign indicates that M_{A} acts in the opposite direction to that shown on FBD.
Equations of Equilibrium: For point B

$$
\begin{array}{cc}
\pm \Sigma F_{x}=0 ; & N_{B}=0 \\
+\uparrow \Sigma F_{y}=0 ; & V_{B}-2.475-1.5=0 \\
& V_{B}=3.975 \mathrm{kN} \\
C+\Sigma M_{B}=0 ; & -M_{B}-2.475(1.65)-1.500(3.3)=0 \\
& M_{B}=-9.03 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.

Ans.

Ans.
Negative sign indicates that M_{B} acts in the opposite direction to that shown on FBD.

Equations of Equilibrium: For point C

$$
\begin{array}{cc}
\pm \Sigma F_{x}=0 ; & V_{C}=0 \\
+\uparrow \Sigma F_{y}=0 ; & -N_{C}-1.125-2.925-1.500=0 \\
& N_{C}=-5.55 \mathrm{kN} \\
C+\Sigma M_{C}=0 ; & -M_{C}-2.925(1.95)-1.500(3.9)=0 \\
& M_{C}=-11.6 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.

Ans.

Ans.
Negative signs indicate that N_{C} and M_{C} act in the opposite direction to that shown on FBD.

Ans:

$$
\begin{aligned}
& N_{A}=0, V_{A}=2.175 \mathrm{kN}, M_{A}=-1.65 \mathrm{kN} \cdot \mathrm{~m}, \\
& N_{B}=0, V_{B}=3.975 \mathrm{kN}, M_{B}=-9.03 \mathrm{kN} \cdot \mathrm{~m}, \\
& V_{C}=0, N_{C}=-5.55 \mathrm{kN}, M_{C}=-11.6 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

1-15.

The metal stud punch is subjected to a force of 120 N on the handle. Determine the magnitude of the reactive force at the $\operatorname{pin} A$ and in the short link $B C$. Also, determine the resultant internal loadings acting on the cross section at point D.

SOLUTION

Member:

$$
\begin{array}{ll}
\varsigma+\Sigma M_{A}=0 ; & F_{B C} \cos 30^{\circ}(50)-120(500)=0 \\
& F_{B C}=1385.6 \mathrm{~N}=1.39 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; & A_{y}-1385.6-120 \cos 30^{\circ}=0 \\
& A_{y}=1489.56 \mathrm{~N} \\
\pm \Sigma F_{x}=0 ; & A_{x}-120 \sin 30^{\circ}=0 ; \quad A_{x}=60 \mathrm{~N} \\
F_{A}=\sqrt{1489.56^{2}+60^{2}} & \\
=1491 \mathrm{~N}=1.49 \mathrm{kN}
\end{array}
$$

Segment:

$$
\begin{array}{ll}
\nwarrow^{+} \Sigma F_{x^{\prime}}=0 ; & N_{D}-120=0 \\
& N_{D}=120 \mathrm{~N} \\
+\nearrow \Sigma F_{y^{\prime}}=0 ; & V_{D}=0 \\
\varsigma+\Sigma M_{D}=0 ; & M_{D}-120(0.3)=0 \\
& M_{D}=36.0 \mathrm{~N} \cdot \mathrm{~m}
\end{array}
$$

Ans.

Ans.

Ans.
Ans.

Ans.
https://ebookyab.ir/solutions-manual-mechanics-of-materials-hibbeler/
*1-16.
Determine the resultant internal loadings acting on the cross section at point E of the handle arm, and on the cross section of the short link $B C$.

SOLUTION

Member:
$\zeta+\Sigma M_{A}=0 ; \quad F_{B C} \cos 30^{\circ}(50)-120(500)=0$
$F_{B C}=1385.6 \mathrm{~N}=1.3856 \mathrm{kN}$

Segment:

Σ
x^{\prime}
$=0 ;$
$N_{E}=0$
$\Sigma+\Sigma F_{y^{\prime}}=0 ;$
$V_{E}-120=0 ;$
$V_{E}=120 \mathrm{~N}$
$\varsigma+\Sigma M_{E}=0 ; \quad M_{E}-120(0.4)=0 ; \quad M_{E}=48.0 \mathrm{~N} \cdot \mathrm{~m}$
Short link:
$\pm \Sigma F_{x}=0 ; \quad V=0$
$+\uparrow \Sigma F_{y}=0 ; \quad 1.3856-N=0 ; \quad N=1.39 \mathrm{kN}$
$\zeta+\Sigma M_{H}=0 ; \quad M=0$

Ans.
Ans.
Ans.

Ans.
Ans.
Ans.

Ans:

$N_{E}=0, V_{E}=120 \mathrm{~N}, M_{E}=48.0 \mathrm{~N} \cdot \mathrm{~m}$, Short link: $V=0, N=1.39 \mathrm{kN}, M=0$

1-17. The forged steel clamp exerts a force of $F=900 \mathrm{~N}$ on the wooden block. Determine the resultant internal loadings acting on section $a-a$ passing through point A.

SOLUTION

Internal Loadings: Referring to the free-body diagram of the section of the clamp shown in Fig. a,

$$
\begin{array}{lcll}
\Sigma F_{y^{\prime}}=0 ; & 900 \cos 30^{\circ}-N_{a-a}=0 & N_{a-a}=779 \mathrm{~N} & \text { Ans. } \\
\Sigma F_{x^{\prime}}=0 ; & V_{a-a}-900 \sin 30^{\circ}=0 & V_{a-a}=450 \mathrm{~N} & \text { Ans. } \\
C+\Sigma M_{A}=0 ; & 900(0.2)-M_{a-a}=0 & M_{a-a}=180 \mathrm{~N} \cdot \mathrm{~m} & \text { Ans. }
\end{array}
$$

Ans:
$N_{a-a}=779 \mathrm{~N}, V_{a-a}=450 \mathrm{~N}$,
$900(0.2)-M_{a-a}=0, M_{a-a}=180 \mathrm{~N} \cdot \mathrm{~m}$

1-18. Determine the resultant internal loadings acting on the cross section through point B of the signpost. The post is fixed to the ground and a uniform pressure of $500 \mathrm{~N} / \mathrm{m}^{2}$ acts perpendicular to the face of the sign.

SOLUTION

$$
\begin{array}{ll}
\Sigma F_{x}=0 ; & \left(V_{B}\right)_{x}-7500=0 ; \quad\left(V_{B}\right)_{x}=7500 \mathrm{~N}=7.5 \mathrm{kN} \\
\Sigma F_{y}=0 ; & \left(V_{B}\right)_{y}=0 \\
\Sigma F_{z}=0 ; & \left(N_{B}\right)_{z}=0 \\
\Sigma M_{x}=0 ; & \left(M_{B}\right)_{x}=0 \\
\Sigma M_{y}=0 ; & \left(M_{B}\right)_{y}-7500(7.5)=0 ; \quad\left(M_{B}\right)_{y}=56250 \mathrm{~N} \cdot \mathrm{~m}=56.25 \mathrm{kN} \cdot \mathrm{~m} \\
\Sigma M_{z}=0 ; & \left(T_{B}\right)_{z}-7500(0.5)=0 ; \quad\left(T_{B}\right)_{z}=3750 \mathrm{~N} \cdot \mathrm{~m}=3.75 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.
Ans.

Ans.
Ans.
Ans.
Ans.

Ans:

$\left(V_{B}\right)_{x}=7.5 \mathrm{kN},\left(V_{B}\right)_{y}=0,\left(N_{B}\right)_{z}=0$,
$\left(M_{B}\right)_{x}=0,\left(M_{B}\right)_{y}=56.25 \mathrm{kN} \cdot \mathrm{m}$,
$\left(T_{B}\right)_{z}=3.75 \mathrm{kN} \cdot \mathrm{m}$

1-19.

Determine the resultant internal loadings acting on the cross section at point C in the beam. The load D has a mass of 300 kg and is being hoisted by the motor M with constant velocity.

SOLUTION

\[

\]

Ans.
Ans.

Ans.

[^0]*1-20.
Determine the resultant internal loadings acting on the cross section at point E. The load D has a mass of 300 kg and is being hoisted by the motor M with constant velocity.

SOLUTION

$$
\begin{array}{ll}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{E}+2943=0 \\
& N_{E}=-2.94 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; & -2943-V_{E}=0 \\
& V_{E}=-2.94 \mathrm{kN} \\
\varsigma+\Sigma M_{E}=0 ; & M_{E}+2943(1)=0 \\
& M_{E}=-2.94 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.

Ans.

Ans:

$N_{E}=-2.94 \mathrm{kN}$,
$V_{E}=-2.94 \mathrm{kN}$,
$M_{E}=-2.94 \mathrm{kN} \cdot \mathrm{m}$
$M_{E}=-2.94 \mathrm{kN} \cdot \mathrm{m}$
https://ebookyab.ir/solutions-manual-mechanics-of-materials-hibbeler/ Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

1-21. Determine the resultant internal loading on the cross section through point C of the pliers. There is a pin at A, and the jaws at B are smooth.

SOLUTION

$$
\begin{array}{ll}
+\uparrow \Sigma F_{y}=0 ; & -V_{C}+60=0 ; \quad V_{C}=60 \mathrm{~N} \\
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{C}=0 \\
+\left\lceil\Sigma M_{C}=0 ;\right. & -M_{C}+60(0.015)=0 ; \quad M_{C}=0.9 \mathrm{~N} . \mathrm{m}
\end{array}
$$

Ans.

Ans.
Ans.

Ans:
$V_{C}=60 \mathrm{~N}, N_{C}=0, M_{C}=0.9 \mathrm{~N} \cdot \mathrm{~m}$
https://ebookyab.ir/solutions-manual-mechanics-of-materials-hibbeler/ Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

1-22. Determine the resultant internal loading on the cross section through point D of the pliers.

SOLUTION

$$
\begin{array}{lll}
\searrow+\Sigma F_{y}=0 ; & V_{D}-20 \cos 30^{\circ}=0 ; & V_{D}=17.3 \mathrm{~N} \\
+\swarrow \Sigma F_{x}=0 ; & N_{D}-20 \sin 30^{\circ}=0 ; & N_{D}=10 \mathrm{~N} \\
+\Sigma \Sigma M_{D}=0 ; & M_{D}-20(0.08)=0 ; & M_{D}=1.60 \mathrm{~N} . \mathrm{m}
\end{array}
$$

Ans.
Ans.
Ans.

1-23.

The shaft is supported at its ends by two bearings A and B and is subjected to the forces applied to the pulleys fixed to the shaft. Determine the resultant internal loadings acting on the cross section at point C. The $400-\mathrm{N}$ forces act in the $-z$ direction and the $200-\mathrm{N}$ and $80-\mathrm{N}$ forces act in the $+y$ direction. The journal bearings at A and B exert only y and z components of force on the shaft.

SOLUTION

Support Reactions:

$$
\begin{aligned}
& \Sigma M_{z}=0 ; \quad 160(0.4)+400(0.7)-A_{y}(1.4)=0 \\
& A_{y}=245.71 \mathrm{~N} \\
& \Sigma F_{y}=0 ; \quad-245.71-B_{y}+400+160=0 \\
& B_{y}=314.29 \mathrm{~N} \\
& \Sigma M_{y}=0 ; \quad 800(1.1)-A_{z}(1.4)=0 \quad A_{z}=628.57 \mathrm{~N} \\
& \Sigma F_{z}=0 ; \quad B_{z}+628.57-800=0 \quad B_{z}=171.43 \mathrm{~N}
\end{aligned}
$$

Equations of Equilibrium: For point C

$$
\begin{array}{cc}
\Sigma F_{x}=0 ; & \left(N_{C}\right)_{x}=0 \\
\Sigma F_{y}=0 ; & -245.71+\left(V_{C}\right)_{y}=0 \\
& \left(V_{C}\right)_{y}=-246 \mathrm{~N} \\
\Sigma F_{z}=0 ; & 628.57-800+\left(V_{C}\right)_{z}=0 \\
& \left(V_{C}\right)_{z}=-171 \mathrm{~N} \\
\Sigma M_{x}=0 ; & \left(T_{C}\right)_{x}=0 \\
\Sigma M_{y}=0 ; & \left(M_{C}\right)_{y}-628.57(0.5)+800(0.2)=0 \\
& \left(M_{C}\right)_{y}=-154 \mathrm{~N} \cdot \mathrm{~m} \\
\Sigma M_{z}=0 ; & \left(M_{C}\right)_{z}-245.71(0.5)=0 \\
& \\
& \left(M_{C}\right)_{z}=-123 \mathrm{~N} \cdot \mathrm{~m}
\end{array}
$$

Ans.

$$
\begin{aligned}
& \text { Ans: } \\
& \left(N_{C}\right)_{x}=0, \\
& \left(V_{C}\right)_{y}=-246 \mathrm{~N}, \\
& \left(V_{C}\right)_{z}=-171 \mathrm{~N}, \\
& \left(T_{C}\right)_{x}=0, \\
& \left(M_{C}\right)_{y}=-154 \mathrm{~N} \cdot \mathrm{~m}, \\
& \left(M_{C}\right)_{z}=-123 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

* 1.24 .

The force $F=400 \mathrm{~N}$ acts on the gear tooth. Determine the resultant internal loadings on the root of the tooth, i.e., at the centroid point A of section $a-a$.

SOLUTION

Equations of Equilibrium: For section $a-a$
$+\nearrow \Sigma F_{x^{\prime}}=0 ; \quad V_{A}-400 \cos 15^{\circ}=0$

$$
V_{A}=386.37 \mathrm{~N}
$$

$\Sigma^{+} \Sigma F_{y^{\prime}}=0 ; \quad N_{A}-400 \sin 15^{\circ}=0$

$$
N_{A}=103.53 \mathrm{~N}
$$

$\zeta+\Sigma M_{A}=0 ; \quad-M_{A}-400 \sin 15^{\circ}(0.004)+400 \cos 15^{\circ}(0.00575)=0$
$M_{A}=1.808 \mathrm{~N} \cdot \mathrm{~m}$

Ans.

Ans.

Ans.

[^1]
1-25.

The shaft is supported at its ends by two bearings A and B and is subjected to the forces applied to the pulleys fixed to the shaft. Determine the resultant internal loadings acting on the cross section at point D. The $400-\mathrm{N}$ forces act in the $-z$ direction and the $200-\mathrm{N}$ and $80-\mathrm{N}$ forces act in the $+y$ direction. The journal bearings at A and B exert only y and z components of force on the shaft.

SOLUTION

Support Reactions:

$$
\begin{array}{cc}
\Sigma M_{z}=0 ; & 160(0.4)+400(0.7)-A_{y}(1.4)=0 \\
& A_{y}=245.71 \mathrm{~N} \\
\Sigma F_{y}=0 ; & -245.71-B_{y}+400+160=0 \\
& B_{y}=314.29 \mathrm{~N} \\
\Sigma M_{y}=0 ; & 800(1.1)-A_{z}(1.4)=0
\end{array} A_{z}=628.57 \mathrm{~N}, ~\left(\begin{array}{cc}
\\
\Sigma F_{z}=0 ; & B_{z}+628.57-800=0
\end{array} B_{z}=171.43 \mathrm{~N} .\right.
$$

Equations of Equilibrium: For point D
$\Sigma F_{x}=0 ;$

$$
\left(N_{D}\right)_{x}=0
$$

$$
\Sigma F_{y}=0 ; \quad\left(V_{D}\right)_{y}-314.29+160=0
$$

$$
\left(V_{D}\right)_{y}=154 \mathrm{~N}
$$

$$
\Sigma F_{z}=0 ; \quad 171.43+\left(V_{D}\right)_{z}=0
$$

$$
\left(V_{D}\right)_{z}=-171 \mathrm{~N}
$$

$\Sigma M_{x}=0 ;$

$$
\left(T_{D}\right)_{x}=0
$$

$$
\Sigma M_{y}=0 ; \quad 171.43(0.55)+\left(M_{D}\right)_{y}=0
$$

$$
\left(M_{D}\right)_{y}=-94.3 \mathrm{~N} \cdot \mathrm{~m}
$$

$\Sigma M_{z}=0 ; \quad 314.29(0.55)-160(0.15)+\left(M_{D}\right)_{z}=0$

$$
\left(M_{D}\right)_{z}=-149 \mathrm{~N} \cdot \mathrm{~m}
$$

Ans.

Ans:
$\left(N_{D}\right)_{x}=0$,
$\left(V_{D}\right)_{y}=154 \mathrm{~N}$,
$\left(V_{D}\right)_{z}=-171 \mathrm{~N}$,
$\left(T_{D}\right)_{x}=0$,
$\left(M_{D}\right)_{y}=-94.3 \mathrm{~N} \cdot \mathrm{~m}$,
$\left(M_{D}\right)_{z}=-149 \mathrm{~N} \cdot \mathrm{~m}$

[^0]: Ans:
 $N_{C}=-2.94 \mathrm{kN}$,
 $V_{C}=2.94 \mathrm{kN}$,
 $M_{C}=-1.47 \mathrm{kN} \cdot \mathrm{m}$

[^1]: Ans:
 $V_{A}=386.37 \mathrm{~N}, N_{A}=103.53 \mathrm{~N}$,
 $M_{A}=1.808 \mathrm{~N} \cdot \mathrm{~m}$

