Preliminaries

0.9 Problems

P.0.1 Let $f:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ be a function. Show that the following are equivalent: (a) f is one to one. (b) f is onto. (c) f is a permutation of $1,2, \ldots, n$.
Solution. If S is a finite set, let $\# S$ denote the number of elements in S. The following arguments rely on the fact that if R and T are subsets of a finite set, then $\#(R \cup T) \leq \# R+\# T$, with equality if and only if R and T are disjoint.
(a) \Rightarrow (b) If $n=1$ there is nothing to prove. Proceed by induction. For each $k=$ $1,2, \ldots, n$ let S_{k} be the statement $\#\{f(1), f(2), \ldots, f(k)\}=k$. Then $S_{1}=\{f(1)\}$ contains one element, so S_{1} is true. Assume that $1 \leq k \leq n-1$ and that S_{k} is true. Observe that

$$
\{f(1), f(2), \ldots, f(k+1)\}=\{f(1), f(2), \ldots, f(k)\} \cup\{f(k+1)\} .
$$

Because f is one to one, $\{f(k+1)\}$ is disjoint from $\{f(1), f(2), \ldots, f(k)\}$. Therefore, the induction hypothesis ensures that

$$
\#\{f(1), f(2), \ldots, f(k+1)\}=\#\{f(1), f(2), \ldots, f(k)\}+\#\{f(k+1)\}=k+1,
$$

which shows that S_{k+1} is true. The principle of mathematical induction ensures that S_{n} is true, so $\#\{f(1), f(2), \ldots, f(n)\}=n$. Since

$$
\{f(1), f(2), \ldots, f(n)\} \subseteq\{1,2, \ldots, n\}
$$

and both sets contain n elements, they are identical. This means that f is onto.
(b) \Rightarrow (a) If $n=1$ there is nothing to prove, so assume that $n \geq 2$. Let $k \in$ $\{1,2, \ldots, n\}$ be given and let $F_{k}=\{f(1), f(2), \ldots, f(n)\} \backslash\{f(k)\}$ denote the set obtained by omitting the element $f(k)$ from $\{f(1), f(2), \ldots, f(n)\}$. Since f is onto,

$$
\{1,2, \ldots, n\}=\{f(1), f(2), \ldots, f(n)\}=F_{k} \cup\{f(k)\} .
$$

Therefore,

$$
\begin{equation*}
n=\#\{1,2, \ldots, n\}=\#\left(F_{k} \cup\{f(k)\}\right) \leq \# F_{k}+\#\{f(k)\} \tag{0.9.1}
\end{equation*}
$$

with equality if and only if F_{k} and $\{f(k)\}$ are disjoint. Since $\# F_{k} \leq n-1$ and $\#\{f(k)\}=1$, the inequality in (0.9.1) is an equality; we conclude that F_{k} and $\{f(k)\}$ are disjoint. Therefore, $f(k) \neq f(i)$ for all $i \in\{1,2, \ldots, n\}$ such that $i \neq k$. Since $k \in\{1,2, \ldots, n\}$ is arbitrary, it follows that f is one to one.
(a) \Leftrightarrow (c) This is a definition.
P.0.2 Show that (a) the diagonal entries of a Hermitian matrix are real; (b) the diagonal entries of a skew-Hermitian matrix are purely imaginary; (c) the diagonal entries of a skew-symmetric matrix are zero.

Solution. (a) If A is Hermitian, then $A^{*}=\left[\bar{a}_{j i}\right]=\left[a_{i j}\right]=A$, so $\bar{a}_{j j}=a_{j j}$ (that is, each $a_{j j}$ is real) for all $j=1,2, \ldots, n$.
(b) If A is skew-Hermitian, then $A^{*}=\left[\bar{a}_{j i}\right]=\left[-a_{i j}\right]=-A$, so $\bar{a}_{j j}=-a_{j j}$ (that is, each $a_{j j}$ is pure imaginary) for all $j=1,2, \ldots, n$.
(c) If A is skew-symmetric, then $A^{\top}=\left[a_{j i}\right]=\left[-a_{i j}\right]=-A^{\top}$, so $a_{j j}=-a_{j j}$ (that is, each $a_{j j}=0$) for all $j=1,2, \ldots, n$.
P.0.3 Use mathematical induction to prove that $1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ for $n=1,2, \ldots$.

Solution. Let $n \geq 1$ and let S_{n} be the statement that

$$
\sum_{k=1}^{n} k^{2}=n(n+1)(2 n+1) / 6
$$

Then S_{1} is the assertion that

$$
1=\frac{1(1+1)(2+1)}{6},
$$

which is true. Let $n \geq 1$ and assume that S_{n} is true. Then

$$
\begin{aligned}
\sum_{k=1}^{n+1} k^{2} & =\sum_{k=1}^{n} k^{2}+(n+1)^{2} \\
& =\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2}=\frac{(n+1)\left(2 n^{2}+7 n+6\right)}{6} \\
& =\frac{(n+1)(n+2)(2 n+3)}{6},
\end{aligned}
$$

which shows that S_{n+1} is true. The principle of mathematical induction ensures that S_{n} is true for all $n=1,2, \ldots$.
P.0.4 Use mathematical induction to prove that $1^{3}+2^{3}+\cdots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$ for $n=1,2, \ldots$.
Solution. Let $n \geq 1$ and let S_{n} be the statement that $\sum_{k=1}^{n} k^{3}=n^{2}(n+1)^{2} / 4$.

The S_{1} is the assertion that

$$
1=\frac{1^{2} 2^{2}}{4}=1
$$

which is true. Let $n \geq 1$ and assume that S_{n} is true. Then

$$
\begin{aligned}
\sum_{k=1}^{n+1} k^{3} & =\sum_{k=1}^{n} k^{3}+(n+1)^{3}=\frac{n^{2}(n+1)^{2}}{4}+(n+1)^{3} \\
& =(n+1)^{2} \frac{n^{2}+4(n+1)}{4}=\frac{(n+1)^{2}(n+2)^{2}}{4}
\end{aligned}
$$

which shows that S_{n+1} is true. The principle of mathematical induction ensures that S_{n} is true for all $n=1,2, \ldots$..
P.0.5 Let $A \in \mathrm{M}_{n}$ be invertible. Use mathematical induction to prove that $\left(A^{-1}\right)^{k}=$ $\left(A^{k}\right)^{-1}$ for all integers k.

Solution. For each $k \in \mathbb{Z}$ we must prove that $A^{k}\left(A^{-1}\right)^{k}=\left(A^{-1}\right)^{k} A^{k}=I$; denote this statement by S_{k}. Then S_{0} is true because $A^{0}=I$ by definition, $A^{0}\left(A^{-1}\right)^{0}=$ $I I=I$, and $\left(A^{-1}\right)^{0} A^{0}=I I=I$. If $k \in \mathbb{Z}$ is negative, then by definition $A^{k}\left(A^{-1}\right)^{k}=$ $\left(A^{-1}\right)^{-k}\left(\left(A^{-1}\right)^{-1}\right)^{-k}=\left(A^{-1}\right)^{-k} A^{-k}$. Therefore, it suffices to prove that S_{k} is true for each positive integer k. The statement S^{1} is $A\left(A^{-1}\right)=\left(A^{-1}\right) A=I$, which is true. Assume that $k \geq 1$ and S^{k} is true. Then S_{k+1} is the statement

$$
A^{k+1}\left(A^{-1}\right)^{k+1}=\left(A^{-1}\right)^{k+1} A^{k+1}=I
$$

The induction hypothesis ensures that

$$
A^{k+1}\left(A^{-1}\right)^{k+1}=A\left(A^{k}\left(A^{-1}\right)^{k}\right) A^{-1}=A I A^{-1}=I
$$

and

$$
\left(A^{-1}\right)^{k+1} A^{k+1}=A^{-1}\left(\left(A^{-1}\right)^{k} A^{k}\right) A=A^{-1} I A=I
$$

so S_{k+1} is true. The principle of mathematical induction ensures that S_{k} is true for all $k=1,2, \ldots$.
P.0.6 Let $A \in \mathrm{M}_{n}$. Use mathematical induction to prove that $A^{j+k}=A^{j} A^{k}$ for all integers j, k.

Solution. Since A is not assumed to be invertible, we prove this assertion for all $j, k \in \mathbb{N}$. Let $j \in \mathbb{N}$ be given and let S_{k} be the statement that $A^{j+k}=A^{j} A^{k}$. Then $A^{j+0}=A^{j}=A^{j} I=A^{j} A^{0}$, so S_{0} is true. Suppose that S_{k} is true for some $k \geq 0$. Then $A^{j+k+1}=\left(A^{j+k}\right) A=\left(A^{j} A^{k}\right) A=A^{j} A^{k} A=A^{j} A^{k+1}$, so S_{k+1} is true. The principle of mathematical induction ensures that S_{k} is true for all $k \in \mathbb{N}$.

An alternative approach is to invoke the associativity of matrix multiplication:

If $j, k \geq 1$, then

$$
A^{j+k}=\underbrace{A \cdots A}_{j+k \text { factors }}=\underbrace{A \cdots A}_{j \text { factors }} \underbrace{A \cdots A}_{k \text { factors }}=(\underbrace{A \cdots A}_{j \text { factors }})(\underbrace{A \cdots A}_{k \text { factors }})=A^{j} A^{k}
$$

If $j=0$, then $A^{0+k}=A^{k}=I A^{k}=A^{0} A^{k}$. If $k=0$, then $A^{j+0}=A^{j}=A^{j} I=A^{j} A^{0}$.
P.0.7 Use mathematical induction to prove Binet's formula (9.5.5) for the Fibonacci numbers.

Solution. Define f_{k} by $f_{1}=f_{2}=1$ and $f_{k+1}=f_{k}+f_{k-1}$ for $k=2,3, \ldots$. Let $\phi=(1+\sqrt{5}) / 2$ and $\tau=(1-\sqrt{5}) / 2$. Compute $(\phi-\tau) / \sqrt{5}=1=f_{1}$ and $\left(\phi^{2}-\tau^{2}\right) / \sqrt{5}=1=f_{2}$. We must show that $\left(\phi^{k}-\tau^{k}\right) / \sqrt{5}=f_{k}$ for all $k \geq 2$. Suppose that $z \in \mathbb{C}$ and $z^{2}-z-1=0$, that is, $z^{2}=z+1$; check that ϕ and τ satisfy this equation. Notice that $z^{2}=f_{2} z+f_{1}$ and

$$
\begin{aligned}
z^{3} & =z\left(f_{2} z+f_{1}\right)=f_{2} z^{2}+f_{1} z \\
& =f_{2}(z+1)+f_{1} z=\left(f_{2}+f_{1}\right) z+f_{2} \\
& =f_{3} z+f_{2}
\end{aligned}
$$

Let $k \geq 2$ and let S_{k} be the statement that $t^{k}=f_{k} z+f_{k-1}$. We have shown that S_{1} and S_{2} are true. If $k \geq 2$ and S_{k} is true, then

$$
\begin{aligned}
z^{k+1} & =z\left(f_{k} z+f_{k-1}\right)=f_{k} z^{2}+f_{k-1} z \\
& =f_{k}(z+1)+f_{k-1} z=\left(f_{k}+f_{k-1}\right) z+f_{k} \\
& =f_{k+1} z+f_{k}
\end{aligned}
$$

so S_{k+1} is true. The principle of mathematical induction ensures that S_{k} is true for all $k=1,2, \ldots$.

Since ϕ and τ satisfy the equation $z^{2}-z-1=0$, we have

$$
\phi^{k}=f_{k} \phi+f_{k-1}
$$

and

$$
\tau^{k}=f_{k} \tau+f_{k-1}
$$

for all $k=1,2, \ldots$ Therefore, $\phi^{k}-\tau^{k}=f_{k}(\phi-\tau)=f_{k} \sqrt{5}$ and hence

$$
f_{k}=\frac{\phi^{k}-\tau^{k}}{\sqrt{5}}
$$

for all $k=1,2, \ldots$..
P.0.8 Use mathematical induction to prove that $1+z+z^{2}+\cdots+z^{n-1}=\frac{1-z^{n}}{1-z}$ for complex $z \neq 1$ and all positive integers n.
Solution. Let S_{n} be the statement that $(1-z)\left(1+z+\cdots+z^{n-1}\right)=1-z^{n}$. Then
S_{1} is the statement that $(1-z)(1)=1-z$, which is true. Suppose that $n \geq 2$ and S_{n} is true. Then

$$
\begin{aligned}
(1-z)\left(1+z+\cdots+z^{n-1}+z^{n}\right) & =(1-z)\left(1+z+\cdots+z^{n-1}\right)+(1-z) z^{n} \\
& =\left(1-z^{n}\right)+z^{n}-z^{n+1} \\
& =1-z^{n+1}
\end{aligned}
$$

which shows that S_{n+1} is true. The principle of mathematical induction ensures that S_{n} is true for all $n=1,2, \ldots$. If $z \neq 1$, it follows that

$$
1+z+\cdots+z^{n-1}+z^{n}=\frac{1-z^{n+1}}{1-z}
$$

for all $n=1,2, \ldots$
P.0.9 (a) Compute the determinants of the matrices

$$
V_{2}=\left[\begin{array}{cc}
1 & z_{1} \\
1 & z_{2}
\end{array}\right], \quad V_{3}=\left[\begin{array}{ccc}
1 & z_{1} & z_{1}^{2} \\
1 & z_{2} & z_{2}^{2} \\
1 & z_{3} & z_{3}^{2}
\end{array}\right], \quad V_{4}=\left[\begin{array}{cccc}
1 & z_{1} & z_{1}^{2} & z_{1}^{3} \\
1 & z_{2} & z_{2}^{2} & z_{2}^{3} \\
1 & z_{3} & z_{3}^{2} & z_{3}^{3} \\
1 & z_{4} & z_{4}^{2} & z_{4}^{3}
\end{array}\right]
$$

and simplify your answers as much as possible. (b) Use mathematical induction to evaluate the determinant of the $n \times n$ Vandermonde matrix

$$
V_{n}=\left[\begin{array}{ccccc}
1 & z_{1} & z_{1}^{2} & \cdots & z_{1}^{n-1} \tag{0.9.2}\\
1 & z_{2} & z_{2}^{2} & \cdots & z_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & z_{n} & z_{n}^{2} & \cdots & z_{n}^{n-1}
\end{array}\right]
$$

(c) Find conditions on $z_{1}, z_{2}, \ldots, z_{n}$ that are necessary and sufficient for V_{n} to be invertible.

Solution. (a) To compute det V_{2}, subtract z_{1} times the first column from the second column:

$$
\operatorname{det} V_{2}=\operatorname{det}\left[\begin{array}{cc}
1 & 0 \\
1 & z_{2}-z_{1}
\end{array}\right]=z_{2}-z_{1}
$$

To compute det V_{3}, subtract z_{1} times the third column from the fourth column, subtract z_{1} times the first column from the second column, expand by minors across the first row, factor each row, pull out the factors, and use the 2×2 case:

$$
\operatorname{det} V_{3}=\operatorname{det}\left[\begin{array}{ccc}
1 & z_{1} & 0 \\
1 & z_{2} & z_{2}^{2}-z_{2} z_{1} \\
1 & z_{3} & z_{3}^{2}-z_{3} z_{1}
\end{array}\right]=\operatorname{det}\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & z_{2}-z_{1} & z_{2}^{2}-z_{2} z_{1} \\
1 & z_{3}-z_{1} & z_{3}^{2}-z_{3} z_{1}
\end{array}\right]
$$

$$
\begin{aligned}
& =\operatorname{det}\left[\begin{array}{ll}
z_{2}-z_{1} & z_{2}^{2}-z_{2} z_{1} \\
z_{3}-z_{1} & z_{3}^{2}-z_{3} z_{1}
\end{array}\right]=\left(z_{2}-z_{1}\right)\left(z_{3}-z_{1}\right) \operatorname{det}\left[\begin{array}{cc}
1 & z_{2} \\
1 & z_{3}
\end{array}\right] \\
& =\left(z_{3}-z_{2}\right)\left(z_{3}-z_{1}\right)\left(z_{2}-z_{1}\right) \\
& =\prod_{\substack{i, j=1,2,3 \\
i>j}} \prod_{\substack{i, j=1,2,3 \\
i>j}}\left(z_{i}-z_{j}\right) .
\end{aligned}
$$

To compute $\operatorname{det} V_{4}$, proceed as in the 3×3 case to create zero entries in the first row. Subtract a suitable multiple of a column from the column to its right, starting at the right. Expand by minors along the first row, remove a factor from each row, and use the result for the 3×3 case:

$$
\begin{aligned}
& \operatorname{det} V_{4}=\operatorname{det}\left[\begin{array}{cccc}
1 & z_{1} & z_{1}^{2} & z_{1}^{3} \\
1 & z_{2} & z_{2}^{2} & z_{2}^{3} \\
1 & z_{3} & z_{3}^{2} & z_{3}^{3} \\
1 & z_{4} & z_{4}^{2} & z_{4}^{3}
\end{array}\right]=\operatorname{det}\left[\begin{array}{cccc}
1 & z_{1} & z_{1}^{2} & 0 \\
1 & z_{2} & z_{2}^{2} & z_{2}^{3}-z_{2}^{2} z_{1} \\
1 & z_{3} & z_{3}^{2} & z_{3}^{3}-z_{3}^{2} z_{1} \\
1 & z_{4} & z_{4}^{2} & z_{4}^{3}-z_{4}^{2} z_{1}
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cccc}
1 & z_{1} & 0 & 0 \\
1 & z_{2} & z_{2}^{2}-z_{2} z_{1} & z_{2}^{3}-z_{2}^{2} z_{1} \\
1 & z_{3} & z_{3}^{2}-z_{3} z_{1} & z_{3}^{3}-z_{3}^{2} z_{1} \\
1 & z_{4} & z_{4}^{2}-z_{4 z_{1}} & z_{4}^{3}-z_{4}^{2} z_{1}
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & z_{2}-z_{1} & z_{2}^{2}-z_{2} z_{1} & z_{2}^{3}-z_{2}^{2} z_{1} \\
1 & z_{3}-z_{1} & z_{3}^{2}-z_{3} z_{1} & z_{3}^{3}-z_{3}^{2} z_{1} \\
1 & z_{4}-z_{4} & z_{4}^{2}-z_{4 z_{1}} & z_{4}^{3}-z_{4}^{2} z_{1}
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{ccc}
z_{2}-z_{1} & z_{2}^{2}-z_{2} z_{1} & z_{2}^{3}-z_{2}^{2} z_{1} \\
z_{3}-z_{1} & z_{3}^{2}-z_{3} z_{1} & z_{3}^{3}-z_{3}^{2} z_{1} \\
z_{4}-z_{1} & z_{4}^{2}-z_{1} & z_{4}^{3}-z_{4}^{2} z_{1}
\end{array}\right] \\
& =\left(z_{4}-z_{1}\right)\left(z_{3}-z_{1}\right)\left(z_{2}-z_{1}\right) \operatorname{det}\left[\begin{array}{ccc}
1 & z_{2} & z_{2}^{2} \\
1 & z_{3} & z_{3}^{2} \\
1 & z_{4} & z_{4}^{2}
\end{array}\right] \\
& =\left(z_{4}-z_{1}\right)\left(z_{3}-z_{1}\right)\left(z_{2}-z_{1}\right) \prod_{\substack{i, j=2,3,4 i, j=2,3,4 \\
i>j}} \prod_{\substack{i>j}}\left(z_{i}-z_{j}\right) \\
& =\prod_{\substack{i, j=1,2,3,4 i, j=1,2,3,4 \\
i>j}} \prod_{\substack{ \\
i>j}}\left(z_{i}-z_{j}\right) .
\end{aligned}
$$

(b) Let $n \geq 2$ and let S_{n} be the statement that

$$
\operatorname{det} V_{n}=\prod_{\substack{i, j=1,2, \ldots, n i, j=1,2, \ldots, n \\ i>j}}\left(z_{i}-z_{j}\right)
$$

We have shown that S_{n} is true for $n=2,3,4$. Suppose that $n \geq 4$ and S_{n} is true. Use the column-wise elimination process demonstrated in the preceding cases and the induction hypothesis to obtain

$$
\begin{aligned}
\operatorname{det} V_{n+1} & =\operatorname{det}\left[\begin{array}{ccccc}
1 & z_{1} & \cdots & z_{1}^{n-1} & z_{1}^{n} \\
1 & z_{2} & \cdots & z_{2}^{n-1} & z_{2}^{n} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & z_{n+1} & \cdots & z_{n+1}^{n-1} & z_{n+1}^{n}
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cccccc}
1 & 0 & \cdots & 0 & 0 \\
1 & z_{2}-z_{1} & \cdots & z_{2}^{n-1}-z_{2}^{n-2} z_{1} & z_{2}^{n}-z_{2}^{n} z_{1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & z_{n+1}-z_{1} & \cdots & z_{n+1}^{n-1}-z_{n+1}^{n-2} z_{1} & z_{n+1}^{n}-z_{n+1}^{n} z_{1}
\end{array}\right] \\
& =\left(z_{n+1}-z_{1}\right)\left(z_{n}-z_{1}\right) \cdots\left(z_{2}-z_{1}\right) \operatorname{det}\left[\begin{array}{cccc}
1 & z_{2} & \cdots & z_{2}^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & z_{n+1} & \cdots & z_{n+1}^{n-1}
\end{array}\right] \\
& =\left(z_{n+1}-z_{1}\right)\left(z_{n}-z_{1}\right) \cdots\left(z_{2}-z_{1}\right) \prod_{\substack{i, j=2,3, \ldots, n+1 \\
i>j}}^{\substack{i, j=2,3, \ldots, n+1 \\
i>j}} \mid \\
& =\prod_{\substack{i, j=1,2, \ldots, n+1 \\
i>j}}\left(z_{i, j=1,2, \ldots, n+1}^{i>j}\right.
\end{aligned}
$$

This shows that S_{n+1} is true. The principle of mathematical induction ensures that S_{n} is true for all $n=1,2, \ldots$.
(c) The formula for det S_{n} shows that V_{n} is invertible if and only if $z_{i} \neq z_{j}$ for all $i, j=1,2, \ldots, n$ such that $i \neq j$.
P.0.10 Consider the polynomial $p(z)=c_{k} z^{k}+c_{k-1} z^{k-1}+\cdots+c_{1} z+c_{0}$, in which $k \geq 1$, each coefficient c_{i} is a nonnegative integer, and $c_{k} \geq 1$. Prove the following statements: (a) $p(t+2)=c_{k} t^{k}+d_{k-1} t^{k-1}+\cdots+d_{1} t+d_{0}$, in which each d_{i} is a nonnegative integer and $d_{0} \geq 2^{k}$. (b) $p\left(n d_{0}+2\right)$ is divisible by d_{0} for each $n=1,2, \ldots$ (c) $p(n)$ is not a prime for infinitely many positive integers n. This was proved by C. Goldbach in 1752 .

Solution. (a) Compute

$$
\begin{aligned}
p(t+2) & =c_{k}(t+2)^{k}+c_{k-1}(t+2)^{k-1}+\cdots+c_{1}(t+2)+c_{0} \\
& =c_{k}\left(t^{k}+\cdots+2^{k}\right)+c_{k-1}\left(t^{k-1}+\cdots+2^{k-1}\right)+\cdots c_{1}(t+2)+c_{0} \\
& =c_{k} t^{k}+d_{k-1} t^{k-1}+\cdots+d_{1} t+d_{0}
\end{aligned}
$$

in which each d_{j} is a nonnegative integer because it is a sum of nonnegative integer multiples of the integers $c_{0}, c_{1}, \ldots, c_{k}$. Since each $c_{i} \geq 0, c_{k} \geq 1$, and $k \geq 1$, we have

$$
d_{0}=c_{k} 2^{k}+c_{k-1} 2^{k-1}+\cdots+2 c_{1}+c_{0} \geq c_{k} 2^{k} \geq 2^{k}>1
$$

(b) For each positive integer $n, p\left(n d_{0}+2\right)$ is a sum

$$
p\left(n d_{0}+2\right)=c_{k}\left(n d_{0}\right)^{k}+d_{k-1}\left(n d_{0}\right)^{k-1}+\cdots+d_{1}\left(n d_{0}\right)+d_{0}
$$

in which each summand is either zero or a positive integer divisible by d_{0}. Therefore, $p\left(n d_{0}+2\right)$ is divisible by the positive integer $d_{0}>1$.
(c) In (b) we have exhibited infinitely many positive integers m (namely, $m=n d_{0}+2$ for $n=1,2, \ldots$) such that $p(m)$ is not prime.
P.0.11 If p is a real polynomial, show that $p(\lambda)=0$ if and only if $p(\bar{\lambda})=0$.

Solution. Let $p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$, in which $a_{0}, a_{1}, \ldots, a_{n}$ are real. If $p(\lambda)=0$, then

$$
\begin{aligned}
0 & =\overline{0}=\overline{p(\lambda)}=\bar{a}_{n} \bar{\lambda}^{n}+\overline{a_{n-1}} \bar{\lambda}^{n-1}+\cdots+\overline{a_{1}} \bar{\lambda}+\overline{a_{0}} \\
& =a_{n} \bar{\lambda}^{n}+a_{n-1} \bar{\lambda}^{n-1}+\cdots+a_{1} \bar{\lambda}+a_{0} \\
& =p(\bar{\lambda}) .
\end{aligned}
$$

If λ is a non-real root of p, could λ have multiplicity 2 while $\bar{\lambda}$ has multiplicity 3 ? This problem provides no information about the answer to this question, but the following problem shows why λ and $\bar{\lambda}$ have the same multiplicities as zeros of p.
P.0.12 Show that a real polynomial can be factored into real linear factors and real quadratic factors that have no real zeros.

Solution. Let p be a real polynomial of degree $n \geq 1$. If $n=1$ then $p(z)=c_{1} z+c_{0}$, $c_{1} \neq 0$, and the real number $-c_{0} / c_{1}$ is the only zero of p. Now suppose that $n \geq 2$. If a non-real complex number μ_{1} is a zero of p, the preceding problem ensures that $\overline{\mu_{1}}$ is also a zero of p. Therefore, p is divisible by $\left(z-\mu_{1}\right)$, by $\left(z-\overline{\mu_{1}}\right)$, and therefore by their product, which is the real quadratic polynomial

$$
g\left(z, \mu_{1}\right)=\left(z-\mu_{1}\right)\left(z-\overline{\mu_{1}}\right)=z^{2}-2\left(\operatorname{Re} \mu_{1}\right) z+\left|\mu_{1}\right|^{2}
$$

that is, $p(z)=g\left(z, \mu_{1}\right) q_{n-2}(z)$, in which the quotient q_{n-2} is a real polynomial of degree $n-2$. If q_{n-2} has any non-real zeros, let μ_{2} be one of them. The preceding argument shows that $q_{n-2}(z)=g\left(z, \mu_{2}\right) q_{n-4}(z)$, in which the quotient q_{n-4} is a real polynomial of degree $n-4$ and $p(z)=g\left(z, \mu_{1}\right) g\left(z, \mu_{2}\right) q_{n-4}(z)$. Continue this process until the quotient has no non-real zeroes, that is,

$$
p(z)=g\left(z, \mu_{1}\right) g\left(z, \mu_{2}\right) \cdots g\left(z, \mu_{k}\right) q_{n-2 k}(z)
$$

in which $q_{n-2 k}$ is a real polynomial of degree $n-2 k$ that has no non-real zeros. If $n=$
$2 k$, then $q_{n-2 k}(z)=c$ is a nonzero scalar and $p(z)=c g\left(z, \mu_{1}\right) g\left(z, \mu_{2}\right) \cdots g\left(z, \mu_{k}\right)$. If $n>2 k$, then $q_{n-2 k}(z)$ has only real zeros $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-2 k}$ and $q_{n-2 k}(z)=$ $c\left(z-\lambda_{1}\right)\left(z-\lambda_{2}\right) \cdots\left(z-\lambda_{n-2 k}\right)$ for some nonzero scalar c. In this case,

$$
p(z)=c g\left(z, \mu_{1}\right) g\left(z, \mu_{2}\right) \cdots g\left(z, \mu_{k}\right)\left(z-\lambda_{1}\right)\left(z-\lambda_{2}\right) \cdots\left(z-\lambda_{n-2 k}\right)
$$

This argument shows that each non-real zero of p has the same multiplicity as its complex conjugate.
P.0.13 Show that every real polynomial of odd degree has a real zero. Hint: Use the Intermediate Value Theorem.

Solution. Let $p(z)=c_{n} z^{n}+c_{n-1} z^{n-1}+\cdots+c_{1} z+c_{0}$, in which $n \geq 1$ is odd, $c_{n} \neq 0$, and all the coefficients are real. Let $t \in \mathbb{R}$ be nonzero and define

$$
g(t)=c^{n-1} t^{-1}+c_{n-2} t^{-2}+\cdots+c_{1} t^{-n+1}+c_{0} t^{-n}
$$

Then $p(t)=t^{n}\left(c_{n}+g(t)\right)$. Since $\lim _{t \rightarrow \pm \infty} g(t)=0$, for sufficiently large positive or negative M, the value $p(M)$ has the same sign as $M^{n} c_{n}$ and $p(-M)$ has the same sign as $(-M)^{n} c_{n}$. Since n is odd, M^{n} and $(-M)^{n}$ (and therefore also $p(M)$ and $p(-M)$) have opposite signs. Since p is a continuous real valued function, the intermediate value theorem ensures that $p(t)=0$ for some $t \in[-M, M]$.
P.0.14 Let $h(z)$ be a polynomial and suppose that $z(z-1) h(z)=0$ for all $z \in[0,1]$. Prove that h is the zero polynomial.

Solution. Since $z(z-1) h(z)=0$ for all $z \in[0,1]$ and $z(z-1) \neq 0$ for all $z \in(0,1)$, it follows that $h(z)=0$ for all $z \in(0,1)$. A polynomial has infinitely many zeros if and only if it is the zero polynomial, so we conclude that h is the zero polynomial.
P.0.15 (a) Prove that the $n \times n$ Vandermonde matrix (0.9.2) is invertible if and only if the n complex numbers $z_{1}, z_{2}, \ldots, z_{n}$ are distinct. Hint: Consider the system $V_{n} \mathbf{c}=\mathbf{0}$, in which $\mathbf{c}=\left[\begin{array}{llll}c_{0} & c_{1} & \ldots & c_{n-1}\end{array}\right]^{\top}$, and the polynomial $p(z)=c_{n-1} z^{n-1}+\cdots+c_{1} z+c_{0}$. (b) Use (a) to prove the Lagrange Interpolation Theorem (Theorem 0.7.6).

Solution. (a) The assertion has already been proved in P.0.9, but the hint directs us to give a different proof. Let $n \geq 2$, let $\mathbf{c}=\left[\begin{array}{cccc}c_{0} & c_{1} & \ldots & c_{n-1}\end{array}\right]^{\top} \in \mathbb{C}^{n}$, and let $p(z)=$ $c_{n-1} z^{n-1}+c_{n-2} z^{n-2}+\cdots+c_{1} z+c_{0}$. Observe that $V_{n} \mathbf{c}=\left[p\left(z_{1}\right) p\left(z_{2}\right) \ldots p\left(z_{n}\right)\right]^{\top}$.

Suppose that $z_{1}, z_{2}, \ldots, z_{n}$ are distinct. If V_{n} is not invertible then there is a nonzero vector \mathbf{c} such that $V_{n} \mathbf{c}=\mathbf{0}$, and hence $p\left(z_{1}\right)=p\left(z_{2}\right)=\cdots=p\left(z_{n}\right)=0$. But p is a polynomial of degree at most $n-1$, so it has more than $n-1$ distinct zeros if and only if it is the zero polynomial, that is, if and only if $c_{0}=c_{1}=\cdots=$ $c_{n-1}=0$, which is not possible since $\mathbf{c} \neq \mathbf{0}$. This contradiction shows that V_{n} must be invertible.

Conversely, suppose that $z_{1}, z_{2}, \ldots, z_{n}$ are not distinct. Then two rows of V_{n} are
identical, so det $V_{n}=0$ and V_{n} is not invertible. This shows that $z_{1}, z_{2}, \ldots, z_{n}$ are distinct if and only if V_{n} is invertible.
(b) Using the notation of (a), the Lagrange Interpolation Theorem says that if $z_{1}, z_{2}, \ldots, z_{n}$ are distinct, then the linear system $V_{n} \mathbf{c}=\left[p\left(z_{1}\right) p\left(z_{2}\right) \ldots p\left(z_{n}\right)\right]^{\top}=\mathbf{w}$ has a unique solution \mathbf{c} for any given \mathbf{w}. A linear system has a unique solution for any given right-hand side if and only if its coefficient matrix is invertible, and part (a) ensures that V_{n} is invertible if $z_{1}, z_{2}, \ldots, z_{n}$ are distinct. If \mathbf{w} and the distinct values $z_{1}, z_{2}, \ldots, z_{n}$ are real, then $\mathbf{c}=V_{n}^{-1} \mathbf{w}$ is real, so the interpolating polynomial p has real coefficients.
P.0.16 If c is a nonzero scalar and p, q are nonzero polynomials, show that (a) $\operatorname{deg}(c p)=$ $\operatorname{deg} p$, (b) $\operatorname{deg}(p+q) \leq \max \{\operatorname{deg} p, \operatorname{deg} q\}$, and (c) $\operatorname{deg}(p q)=\operatorname{deg} p+\operatorname{deg} q$. What happens if p is the zero polynomial?
Solution. Suppose that m, n are nonnegative integers, $p(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+$ $\cdots+a_{1} z+a_{0}, q(z)=b_{n} z^{n}+b_{n-1} z^{-1}+\cdots+b_{1} z+b_{0}, a_{m} b_{n} \neq 0$, and $c \neq 0$. Then $\operatorname{deg} p=m$ and $\operatorname{deg} q=n$. (a) $c p(z)=c a_{m} z^{m}+\cdots$ and $c a_{m} \neq 0$, so $\operatorname{deg}(c p)=m=$ $\operatorname{deg} p$. (b) $p(z)+q(z)=a_{m} z^{m}+\cdots+b_{n} z^{n}+\cdots$. If $m \neq n$, the highest order nonzero term in $p+q$ is either $a_{m} z^{m}$ or $b_{n} z^{n}$, $\operatorname{so} \operatorname{deg}(p+q)=\max \{m, n\}=\max \{\operatorname{deg} p, \operatorname{deg} q\}$. If $m=n$, the highest order term in $p+q$ is $\left(a_{n}+b_{n}\right) z^{n}$ if $a_{n}+b_{n} \neq 0$, in which case $\operatorname{deg}(p+q)=n=\max \{\operatorname{deg} p, \operatorname{deg} q\}$. If $m=n, a_{n}+b_{n}=0$, and $p+q \neq 0$, the highest order term in $p+q$ has nonnegative degree less than n, so $\operatorname{deg}(p+q)<n=\max \{\operatorname{deg} p, \operatorname{deg} q\}$. If $m=n$ and $p+q=0$, then $-\infty=\operatorname{deg}(p+q)<$ $\operatorname{deg} p+\operatorname{deg} q$. Therefore, in all cases we have $\operatorname{deg}(p+q) \leq \max \{\operatorname{deg} p, \operatorname{deg} q\}$. (c) $p(z) q(z)=a_{m} b_{n} z^{m+n}+\cdots$, so $\operatorname{deg}(p q)=m+n=\operatorname{deg} p+\operatorname{deg} q$.

If p is the zero polynomial, calculations in the extended real number system show that (a) $c p$ is the zero polynomial, so $\operatorname{deg}(c p)=-\infty=\operatorname{deg}(p)$; (b) $p+q=q$, so $\operatorname{deg}(p+q)=\operatorname{deg} q=\max \{-\infty, \operatorname{deg} q\}=\max \{\operatorname{deg} p, \operatorname{deg} q\}$; (c) $p q$ is the zero polynomial, so $\operatorname{deg}(p q)=-\infty=-\infty+\operatorname{deg} q=\operatorname{deg} p+\operatorname{deg} q$.

The problem does not ask, "What happens if p and q are both zero?", but if they are in (a) we have both p and $c p$ zero polynomials, so $-\infty=\operatorname{deg}(c p)=\operatorname{deg} p$; in (b) we have p, q, and $p+q$ all zero polynomials, so $-\infty=\operatorname{deg}(p+q)=\max \{-\infty,-\infty\}=$ $\max \{\operatorname{deg} p, \operatorname{deg} q\} ;$ in (c) we have p, q, and $p q$ all zero polynomials, so $-\infty=$ $\operatorname{deg}(p q)=-\infty+(-\infty)=\operatorname{deg} p+\operatorname{deg} q$.
P.0.17 Prove the uniqueness assertion of the division algorithm. That is, if f and g are polynomials such that $1 \leq \operatorname{deg} g \leq \operatorname{deg} f$ and if q_{1}, q_{2}, r_{1} and r_{2} are polynomials such that $\operatorname{deg} r_{1}<\operatorname{deg} g, \operatorname{deg} r_{2}<\operatorname{deg} g$, and $f=g q_{1}+r_{1}=g q_{2}+r_{2}$, then $q_{1}=q_{2}$ and $r_{1}=r_{2}$.

Solution. If $f=g q_{1}+r_{1}=g q_{2}+r_{2}$, then $0=g\left(q_{1}-q_{2}\right)+\left(r_{1}-r_{2}\right)$ so that $g\left(q_{1}-q_{2}\right)=r_{2}-r_{1}$. If $r_{2}-r_{1}=0$, then the assumption that $g \neq 0(\operatorname{deg} g \geq 1)$
ensures that $q_{1}-q_{2}=0$ and we have uniqueness. Now suppose that $r_{2}-r_{1} \neq 0$, so $\operatorname{deg}\left(r_{2}-r_{1}\right) \geq 0$, which implies that $q_{1}-q_{2} \neq 0$. We are given that $\operatorname{deg} r_{1}<\operatorname{deg} g$ and $\operatorname{deg} r_{2}<\operatorname{deg} g$, so part (c) of the preceding problem ensures that

$$
\operatorname{deg} g>\operatorname{deg}\left(r_{2}-r_{1}\right)=\operatorname{deg}\left(g\left(q_{1}-q_{2}\right)\right)=\operatorname{deg} g+\operatorname{deg}\left(q_{1}-q_{2}\right) \geq \operatorname{deg} g
$$

that is, $\operatorname{deg} g>\operatorname{deg} g$. This contradiction ensures that $r_{2}-r_{1} \neq 0$ is impossible, so $r_{2}-r_{1}=0$ is the only possibility and we have uniqueness.
P.0.18 Give an example of a nonconstant function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(t)=0$ for infinitely many distinct values of t. Is f a polynomial?

Solution. $f(t)=\sin t$ is a real-valued function that has infinitely many real zeros. It is not a polynomial.
P.0.19 Let $A=\operatorname{diag}(1,2)$ and $B=\operatorname{diag}(3,4)$. If $X \in \mathrm{M}_{2}$ intertwines A and B, what can you say about X ? For a generalization, see Theorem 10.4.1.

Solution. Let

$$
X=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

The intertwining relation $A X-B X=0$ in this case is

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

which is

$$
\left[\begin{array}{cc}
a & b \\
2 c & 2 d
\end{array}\right]-\left[\begin{array}{cc}
3 a & 4 b \\
3 c & 4 d
\end{array}\right]=-\left[\begin{array}{cc}
2 a & 3 b \\
c & 2 d
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Therefore, $a=b=c=d=0$ and $X=0$.
P.0.20 Verify the identity (0.5.2) for a 2×2 matrix, and show that the identity (0.3.4) is (0.5.3).

Solution. If

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then

$$
\operatorname{adj} A=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Compute

$$
A \operatorname{adj} A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=(a d-b c)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=(\operatorname{det} A) I
$$

and

$$
(\operatorname{adj} A) A=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=(a d-b c)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=(\operatorname{det} A) I .
$$

If $\operatorname{det} A \neq 0$, then $A\left((\operatorname{det} A)^{-1} \operatorname{adj} A\right)=\left((\operatorname{det} A)^{-1} \operatorname{adj} A\right) A=I$, so $A^{-1}=$ $(\operatorname{det} A)^{-1} \operatorname{adj} A$.
P.0.21 Deduce (0.5.3) from the identity (0.5.2).

Solution. Suppose that $\operatorname{det} A \neq 0$ and let $B=(\operatorname{det} A)^{-1} \operatorname{adj} A$. Since $A B=B A=$ I, B is, by definition, the inverse of A.
P.0.22 Deduce the second assertion in Theorem 0.8 .1 from the first.

Solution. Let $X=B=A$. Then $A A=A A$, so the first assertion becomes $p(A) A=$ $A p(A)$ in this case. This is the second assertion.
P.0.23 Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}4 & 3 \\ 1 & 2\end{array}\right]$, and $C=\left[\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right]$. Show that $A B=A C$ even though $B \neq C$.
Solution. Compute

$$
A B=\left[\begin{array}{ll}
0 & 0 \\
1 & 2
\end{array}\right]=A C,
$$

in which $B \neq C$. We cannot cancel A in the equation $A B=A C$ (that is, we cannot multiply both sides by A^{-1}) because A is not invertible.
P.0.24 Let $A \in \mathrm{M}_{n}$. Show that A is idempotent if and only if $I-A$ is idempotent.

Solution. We have

$$
(I-A)^{2}=I-2 A+A^{2}=(I-A)+\left(A^{2}-A\right) .
$$

Therefore, $(I-A)^{2}=(I-A)$ if and only if $A^{2}-A=0$. That is, $I-A$ is idempotent if and only if A is idempotent.
P.0.25 Let $A \in \mathrm{M}_{n}$ be idempotent. Show that A is invertible if and only if $A=I$.

Solution. If $A^{2}=A$ and A is invertible, then $A=A^{-1} A^{2}=A^{-1} A=I$. If $A=I$ then A is an invertible idempotent matrix.
P.0.26 Let $A, B \in \mathrm{M}_{n}$ be idempotent. Show that $\operatorname{tr}\left((A-B)^{3}\right)=\operatorname{tr}(A-B)$.

Solution. Compute

$$
\begin{aligned}
(A-B)^{3} & =(A-B)\left(A^{2}-A B-B A+B^{3}\right)=(A-B)(A-A B-B A+B) \\
& =A^{2}-A^{2} B-A B A+A B-B A+B A B+B^{2} A-B^{2} \\
& =A-B+B A B-A B A .
\end{aligned}
$$

https://ebookyab.ir/solution-manual-a-second-course-in-linear-algebra-garcia-horn/
(Tyal

Therefore,

$$
\begin{aligned}
\operatorname{tr}(A-B)^{3} & =\operatorname{tr}(A-B)+\operatorname{tr}(B A B-A B A) \\
& =\operatorname{tr}(A-B)+\operatorname{tr}\left(A B^{2}-A^{2} B\right) \\
& =\operatorname{tr}(A-B)+\operatorname{tr}(A B-A B) \\
& =\operatorname{tr}(A-B)
\end{aligned}
$$

1.7 Problems

P.1.1 In the spirit of the examples in Section 1.2 , explain how $\mathcal{V}=\mathbb{C}^{n}$ can be thought of as a vector space over \mathbb{R}. Is $\mathcal{V}=\mathbb{R}^{n}$ a vector space over \mathbb{C} ?

Solution. Vector addition and scalar multiplication are defined entrywise as addition and scalar multiplication of the real and imaginary parts of each entry. That is, if $\mathbf{v}=\left[\begin{array}{llll}a_{1}+b_{1} i & a_{2}+b_{2} i & \ldots & a_{n}+b_{n} i\end{array}\right]^{\top}$ and $\mathbf{w}=\left[\begin{array}{lll}c_{1}+d_{1} i & c_{2}+d_{2} i & \ldots \\ c_{n}+d_{n} i\end{array}\right]^{\top}$ are in \mathcal{V} and $c \in \mathbb{R}$, then

$$
\mathbf{v}+\mathbf{w}=\left[\begin{array}{c}
a_{1}+c_{1}+\left(b_{1}+d_{1}\right) i \\
a_{2}+c_{2}+\left(b_{2}+d_{2}\right) i \\
\vdots \\
a_{n}+c_{n}+\left(b_{n}+d_{n}\right) i
\end{array}\right] \text { and } c \mathbf{v}=\left[\begin{array}{c}
c a_{1}+c b_{1} i \\
c a_{2}+c b_{2} i \\
\vdots \\
c a_{n}+c b_{n} i
\end{array}\right]
$$

The zero vector is $\left[\begin{array}{llll}0 & 0 & \ldots & 0\end{array}\right]^{\top}$.
$\mathcal{V}=\mathbb{R}^{n}$ is not a vector space over \mathbb{C}. For example, $\mathbf{u}=\left[\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right]^{\top} \in \mathcal{V}$ and $i \in \mathbb{C}$ but $i \mathbf{u}=\left[\begin{array}{lll}i & i & \ldots\end{array}\right]^{\top} \notin \mathcal{V}$.
P.1.2 Let \mathcal{V} be the set of real 2×2 matrices of the form $\mathbf{v}=\left[\begin{array}{ll}1 & v \\ 0 & 1\end{array}\right]$. Define $\mathbf{v}+\mathbf{w}=$ $\left[\begin{array}{ll}1 & v \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & w \\ 0 & 1\end{array}\right]$ (ordinary matrix multiplication) and $c \mathbf{v}=\left[\begin{array}{cc}1 & c v \\ 0 & 1\end{array}\right]$. Show that \mathcal{V} together with these two operations is a real vector space. What is the zero vector in \mathcal{V} ?

Solution. We show that the eight axioms hold.
(i) We have

$$
\mathbf{v}+\mathbf{w}=\left[\begin{array}{ll}
1 & v \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & w \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & v+w \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & v \\
0 & 1
\end{array}\right]=\mathbf{v}
$$

if and only if $w=0$, that is, if and only if \mathbf{w} is the identity matrix. Since $I_{2} \in \mathcal{V}$, we see that \mathcal{V} has a zero vector, namely, I_{2}.
(ii) We have

$$
\mathbf{v}+\mathbf{w}=\left[\begin{array}{cc}
1 & v \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & w \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & v+w \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & w+v \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & w \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & v \\
0 & 1
\end{array}\right]=\mathbf{w}+\mathbf{v}
$$

so vector addition is commutative.
(iii) Matrix multiplication is associative so vector addition in \mathcal{V} is also associative.
(iv) We have

$$
\mathbf{v}+\mathbf{w}=\left[\begin{array}{ll}
1 & v \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & w \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & v+w \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

if and only if $w=-v$, that is, if and only if

$$
\mathbf{w}=\left[\begin{array}{cc}
1 & -v \\
0 & 1
\end{array}\right] .
$$

Thus, additive inverses exist and are unique.
(v) We have

$$
1 \mathbf{v}=\left[\begin{array}{cc}
1 & 1 v \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & v \\
0 & 1
\end{array}\right]=v
$$

(vi) We have

$$
a(b \mathbf{v})=a\left(\left[\begin{array}{cc}
1 & b v \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{cc}
1 & a b v \\
0 & 1
\end{array}\right]=(a b) \mathbf{v} .
$$

(vii) We have

$$
\begin{aligned}
c(\mathbf{v}+\mathbf{w}) & =c\left(\left[\begin{array}{ll}
1 & v \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & w \\
0 & 1
\end{array}\right]\right) \\
& =c\left[\begin{array}{cc}
1 & v+w \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & c(v+w) \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & c v+c w \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & c v \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & c w \\
0 & 1
\end{array}\right]=c \mathbf{v}+c \mathbf{w} .
\end{aligned}
$$

(viii) We have

$$
(a+b) \mathbf{v}=\left[\begin{array}{cc}
1 & (a+b) v \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & a v+b v \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & a v \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & b v \\
0 & 1
\end{array}\right]=a \mathbf{v}+b \mathbf{v} .
$$

P.1.3 Show that the intersection of any (possibly infinite) collection of subspaces of an \mathbb{F}-vector space is a subspace.

Solution. Let \mathcal{V} be a \mathbb{F}-vector space and let $\left\{\mathcal{U}_{\alpha}: \alpha \in I\right\}$ be a collection of subspaces of $\mathcal{V} ; I$ is some index set. Let

$$
\mathcal{W}=\bigcap_{\alpha \in I} \mathcal{U}_{\alpha}
$$

Theorem 1.3.3 ensures that it is sufficient to show that $c \mathbf{u}+\mathbf{v} \in \mathcal{W}$ whenever $\mathbf{u}, \mathbf{v} \in \mathcal{W}$ and $c \in \mathbb{F}$. Let $\mathbf{u}, \mathbf{v} \in \mathcal{W}$ and $c \in \mathbb{F}$. Then for all $\alpha \in I, \mathbf{u}, \mathbf{v} \in \mathcal{U}_{\alpha}$.

