https://ebookyab.ir/solution-manual-fourier-analysis-herman/

Contents

Preface iii
1 Review of Sequences and Infinite Series 1
2 Fourier Trigonometric Series 19
3 Non-sinusoidal Harmonics 59
4 Complex Analysis 95
5 Fourier and Laplace Transforms 123
6 From Continuous to Discrete Signals 183
7 Signal Analysis 205
A Quick Answers 221
Ch. 1 Review of Sequences and Infinite Series 221
Ch. 2 Fourier Trigonometric Series 224
Ch. 3 Non-sinusoidal Harmonics 227
Ch. 4 Complex Analysis 230
Ch. 5 Fourier and Laplace Transforms 233
Ch. 6 From Continuous to Discrete Signals 240
Ch. 7 Signal Analysis 241

Chapter 1

Review of Sequences and Infinite Series

1. For those sequences that converge, find the limit $\lim _{n \rightarrow \infty} a_{n}$.
a. $a_{n}=\frac{n^{2}+1}{n^{3}+1}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{n^{2}+1}{n^{3}+1} \\
& =\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{3}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}=0 .
\end{aligned}
$$

b. $a_{n}=\frac{3 n+1}{n+2}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{3 n+1}{n+2} \\
& =\lim _{n \rightarrow \infty} \frac{3+\frac{1}{n}}{1+\frac{2}{n}}=3 .
\end{aligned}
$$

c. $a_{n}=\left(\frac{3}{n}\right)^{1 / n}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right)^{1 / n} \\
& =\lim _{n \rightarrow \infty}\left(\frac{3^{1 / n}}{n^{1 / n}}\right)=1 .
\end{aligned}
$$

d. $a_{n}=\frac{2 n^{2}+4 n^{3}}{n^{3}+5 \sqrt{2+n^{6}}}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{2 n^{2}+4 n^{3}}{n^{3}+5 \sqrt{2+n^{6}}} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{2}{n}+4}{1+5 \sqrt{\frac{2}{n^{6}}+1}} \\
& =\lim _{n \rightarrow \infty} \frac{4}{1+5}=\frac{2}{3} .
\end{aligned}
$$

e. $a_{n}=n \ln \left(1+\frac{1}{n}\right)$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} n \ln \left(1+\frac{1}{n}\right) \\
& =\lim _{n \rightarrow \infty} \ln \left(1+\frac{1}{n}\right)^{n} \\
& =\ln e=1 .
\end{aligned}
$$

f. $a_{n}=n \sin \left(\frac{1}{n}\right)$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} n \sin \left(\frac{1}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{n}\right)}{\frac{1}{n}} \\
& =\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
\end{aligned}
$$

g. $a_{n}=\frac{(2 n+3)!}{(n+1)!}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{(2 n+3)!}{(n+1)!} \\
& =\lim _{n \rightarrow \infty} \frac{(2 n+3)(2 n+2) \cdots(n+2)(n+1)!}{(n+1)!} \\
& =\infty
\end{aligned}
$$

2. Find the sum for each of the series:
a. $\sum_{n=0}^{\infty}(-1)^{n} \frac{3}{4^{n}}$.

This is a geometric series with $a=3$ and $r=-\frac{1}{4}$.

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{3}{4^{n}}=\sum_{n=0}^{\infty} 3\left(-\frac{1}{4}\right)^{n}=\frac{3}{1+\frac{1}{4}}=\frac{12}{5}
$$

b. $\sum_{n=2}^{\infty} \frac{2}{5^{n}}$.

This is a geometric series with $a=\frac{2}{5^{2}}$ and $r=\frac{1}{5}$.

$$
\sum_{n=2}^{\infty} \frac{2}{5^{n}}=\frac{2 / 25}{1-\frac{1}{5}}=\frac{1}{10}
$$

c. $\sum_{n=0}^{\infty}\left(\frac{5}{2^{n}}+\frac{1}{3^{n}}\right)$.

This is the sum of two geometric series with $a=5, r=\frac{1}{2}$ and $a=1, r=\frac{1}{3}$.

$$
\sum_{n=0}^{\infty}\left(\frac{5}{2^{n}}+\frac{1}{3^{n}}\right)=\frac{5}{1-\frac{1}{2}}+\frac{1}{1-\frac{1}{3}}=\frac{23}{2}
$$

d. $\sum_{n=2}^{\infty} e^{-2 n s}$, for $s>0$.

This is a geometric series and can be summed.

$$
\sum_{n=2}^{\infty} e^{-2 n s}=\sum_{n=2}^{\infty}\left(e^{-2 s}\right)^{n}=\frac{e^{-4 s}}{1+e^{-2 s}}=\frac{1}{2} e^{-3 s} \operatorname{sech} s
$$

e. $\sum_{n=1}^{\infty} \frac{3}{n(n+3)}$.

Using a partial fraction decomposition, this can be written as a telescoping series. The N-th partial sum is

$$
\begin{aligned}
\sum_{n=1}^{N} \frac{3}{n(n+3)}= & \sum_{n=1}^{N}\left(\frac{1}{n}-\frac{1}{n+3}\right) \\
= & \left(1-\frac{1}{4}\right)+\left(\frac{1}{2}-\frac{1}{5}\right)+\left(\frac{1}{3}-\frac{1}{6}\right)+\left(\frac{1}{4}-\frac{1}{7}\right) \\
& +\left(\frac{1}{5}-\frac{1}{8}\right)+\cdots+\left(\frac{1}{N-2}-\frac{1}{N+1}\right) \\
& +\left(\frac{1}{N-1}-\frac{1}{N+2}\right)+\left(\frac{1}{N}-\frac{1}{N+3}\right) \\
= & 1+\frac{1}{2}+\frac{1}{3}-\left(\frac{1}{N+1}+\frac{1}{N+2}+\frac{1}{N+3}\right) .
\end{aligned}
$$

Here forward crossed terms like $\frac{1}{1}$ cancel with terms later in sum and backward crossed terms like $\frac{1}{4}$ cancel with earlier terms.
Letting $N \rightarrow \infty$, we have $\sum_{n=1}^{\infty} \frac{3}{n(n+3)}=\frac{11}{6}$.
f. $\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1}$.

One can factor the nth term and use partial fraction decomposition.
This yields

$$
\begin{aligned}
\sum_{n=1}^{N} \frac{1}{(2 n-1)(2 n+1)} & =\frac{1}{2} \sum_{n=1}^{N}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right) \\
& =\frac{1}{2}\left[\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\cdots+\left(\frac{1}{2 N-1}-\frac{1}{2 N+1}\right)\right] \\
& =\frac{1}{2}\left[1-\frac{1}{2 N+1}\right]
\end{aligned}
$$

Letting $N \rightarrow \infty$, we have $\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1}=\frac{1}{2}$.
3. Sum the geometric progression,

$$
\sum_{n=-N}^{N} e^{i n \omega}
$$

The sum of a geometric progression takes the form

$$
\sum_{n=0}^{N-1} a r^{n}=\frac{a\left(1-r^{n}\right)}{1-r} .
$$

Re-indexing the sum, using $j=n+N$, or writing out the terms, we have

$$
\begin{aligned}
\sum_{n=-N}^{N} e^{i n \omega} & =e^{-i N \omega}+e^{-i(N-1) \omega}+\cdots+e^{i(N-1) \omega}+e^{i N \omega} \\
& =e^{-i N \omega}\left[1+e^{i \omega}+\cdots+e^{i(2 N-1) \omega}+e^{i 2 N \omega}\right] \\
& =e^{-i N \omega} \sum_{j=0}^{2 N}\left(e^{i \omega}\right)^{j} \\
& =e^{-i N \omega} \frac{1-e^{i(2 N+1) \omega}}{1-e^{i \omega}} \\
& =\frac{e^{-i N \omega}-e^{i(N+1) \omega}}{1-e^{i \omega}} \\
& =\frac{e^{-i N \omega}-e^{i(N+1) \omega}}{\left(e^{-i \omega / 2}-e^{i \omega / 2}\right) e^{i \omega / 2}} \\
& =\frac{e^{-i(N+1 / 2) \omega}-e^{i(N+1 / 2) \omega}}{e^{-i \omega / 2}-e^{i \omega / 2}} \\
& =\frac{\sin \left(N+\frac{1}{2}\right) \omega}{\sin \frac{\omega}{2}} .
\end{aligned}
$$

4. Determine if the following converge, or diverge, using one of the convergence tests. If the series converges, is it absolute or conditional?
a. $\sum_{n=1}^{\infty} \frac{n+4}{2 n^{3}+1}$.

Since the tail of the series determines the convergence, we note that for large n

$$
\frac{n+4}{2 n^{3}+1} \sim \frac{n}{2 n^{3}}=\frac{1}{2 n^{2}} .
$$

So, we can compare the original series to $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
We compute the following limit

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{n+4}{2 n^{3}+1}}{\frac{1}{n^{2}}} & =\lim _{n \rightarrow \infty} \frac{2 n^{3}+1}{n^{2}(n+4)} \\
& =\lim _{n \rightarrow \infty} \frac{\left(2 n^{3}\right.}{n^{3}}=2 .
\end{aligned}
$$

Therefore, these series either both converge or both diverge. Since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, then the original series converges by the Limit Comparison Test. Also, since the terms are all positive, it converges absolutely.
b. $\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}$.

We note that

$$
\sum_{n=1}^{\infty}\left|\frac{\sin n}{n^{2}}\right| \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty .
$$

Therefore, this series converges absolutely.
c. $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}$.

We apply the nth Root Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}} & =\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n}}=\frac{1}{e}<1
\end{aligned}
$$

Therefore, the series converges by the nth Root Test. Also, since the terms are all positive, it converges absolutely.
d. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n-1}{2 n^{2}-3}$.

We first note that this is an alternating series whose terms have magnitude decreasing to zero,

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n-1}{2 n^{2}-3}=0+\frac{1}{5}-\frac{2}{15}+\frac{3}{38}-\ldots
$$

Therefore, the series converges by the Liebniz Test.
Dropping the signs, we have that $\sum_{n=1}^{\infty} \frac{n-1}{2 n^{2}-3}$ has terms that behave like

$$
\frac{n-1}{2 n^{2}-3} \sim \frac{1}{2 n}
$$

Therefore, this series behaves like the harmonic series, which diverges. So, the original series converges conditionally.
e. $\sum_{n=1}^{\infty} \frac{\ln n}{n}$.

We note that $\frac{\ln n}{n}>\frac{1}{n}, n \geq 3$. Therefore,

$$
\sum_{n=3}^{\infty} \frac{\ln n}{n}>\sum_{n=1}^{\infty} \frac{1}{n}>\infty
$$

Therefore, this series diverges by the Comparison Test.
f. $\sum_{n=1}^{\infty} \frac{100^{n}}{n^{200}}$.

We apply the nth Root Test.

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \frac{100}{1}=100>1
$$

Therefore, the series diverges by the nth Root Test.
g. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n+3}$.

For this series the terms do not go to zero for large n. Namely,

$$
\lim _{n \rightarrow \infty} \frac{n}{n+3}=1
$$

So, by the nth term divergence test, this series diverges.
h. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{5 n}}{n+1}$.

The magnitudes of the terms goes to zero for large n.

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{5 n}}{n+1}=\lim _{n \rightarrow \infty} \frac{\sqrt{5}}{\sqrt{n}}=0
$$

Therefore, the series converges by the Liebniz Test.
Dropping the signs, we have that $\sum_{n=1}^{\infty} \frac{\sqrt{5 n}}{n+1}$ has terms that behave like

$$
\frac{\sqrt{5 n}}{n+1} \sim \frac{\sqrt{5}}{\sqrt{n}}
$$

Therefore, this series diverges according to the p test. So, the original series converges conditionally.
5. Do the following:
a. Compute: $\lim _{n \rightarrow \infty} n \ln \left(1-\frac{3}{n}\right)$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n \ln \left(1-\frac{3}{n}\right) & =\lim _{n \rightarrow \infty} \ln \left(1-\frac{3}{n}\right)^{n} \\
& =\ln e^{-3}=-3 .
\end{aligned}
$$

b. Use L'Hopital's Rule to evaluate $L=\lim _{x \rightarrow \infty}\left(1-\frac{4}{x}\right)^{x}$. [Hint: Consider $\ln L$.]
We use $\ln L$ and L'Hopital's Rule to find

$$
\begin{aligned}
\ln L & =\lim _{x \rightarrow \infty} \ln \left(1-\frac{4}{x}\right)^{x} \\
& =\lim _{x \rightarrow \infty} x \ln \left(1-\frac{4}{x}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\ln \left(1-\frac{4}{x}\right)}{\frac{1}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{4}{x^{2}}}{-\frac{1}{x^{2}}\left(1-\frac{4}{x}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{4}{-\left(1-\frac{4}{x}\right)}=-4 .
\end{aligned}
$$

Since $\ln L=-4, L=e^{-4}$.
c. Determine the convergence of $\sum_{n=1}^{\infty}\left(\frac{n}{3 n+2}\right)^{n^{2}}$.

We apply the nth Root Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}} & =\lim _{n \rightarrow \infty}\left(\frac{n}{3 n+2}\right)^{n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\left(3+\frac{2}{n}\right)^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{3^{n}\left(1+\frac{2 / 3}{n}\right)^{n}}=0<1 .
\end{aligned}
$$

Therefore, by the nth Root Test this series converges.
d. Sum the series $\sum_{n=1}^{\infty}\left[\tan ^{-1} n-\tan ^{-1}(n+1)\right]$ by first writing the N th partial sum and then computing $\lim _{N \rightarrow \infty} s_{N}$.
The N th partial sum is

$$
\begin{aligned}
s_{N}= & \sum_{n=1}^{N}\left[\tan ^{-1} n-\tan ^{-1}(n+1)\right] \\
= & \left(\tan ^{-1} 1-\tan ^{-1} 2\right)+\left(\tan ^{-1} 2-\tan ^{-1} 3\right) \\
& +\cdots+\left(\tan ^{-1} N-\tan ^{-1}(N+1)\right) \\
= & \tan ^{-1} 2-\tan ^{-1}(N+1)
\end{aligned}
$$

Letting $N \rightarrow \infty$, we have

$$
\sum_{n=1}^{\infty}\left[\tan ^{-1} n-\tan ^{-1}(n+1)\right]=\frac{\pi}{4}-\frac{\pi}{2}=-\frac{\pi}{4}
$$

6. Consider the sum $\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+1)}$.
a. Use an appropriate convergence test to show that this series converges.
Since the tail of the series determines the convergence, we note that for large n

$$
\frac{1}{(n+2)(n+1)} \sim \frac{1}{n^{2}}
$$

So, we can compare the original series to $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$. Since the latter series converges, so does this one by the Limit Comparison Test.
One can also use the following

$$
\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+1)}<\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

Therefore, the series converges by the Comparison Test as well.
b. Verify that

$$
\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+1)}=\sum_{n=1}^{\infty}\left(\frac{n+1}{n+2}-\frac{n}{n+1}\right)
$$

One just adds the terms to verify the sum.

$$
\begin{aligned}
\frac{n+1}{n+2}-\frac{n}{n+1} & =\frac{(n+1)^{2}-n(n+2)}{(n+2)(n+1)} \\
& =\frac{1}{(n+2)(n+1)}
\end{aligned}
$$

Note that partial fractions does not give this representation, but instead gives

$$
\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+1)}=\sum_{n=1}^{\infty}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)
$$

This may also be summed as a telescoping series but the instructions for part c apply to the other representation.
c. Find the nth partial sum of the series $\sum_{n=1}^{\infty}\left(\frac{n+1}{n+2}-\frac{n}{n+1}\right)$ and use it to determine the sum of the resulting telescoping series.

$$
\begin{aligned}
s_{N} & =\sum_{n=1}^{\infty}\left(\frac{n+1}{n+2}-\frac{n}{n+1}\right) \\
& =\left(\frac{2}{\beta}-\frac{1}{2}\right)+\left(\frac{3}{A}-\frac{2}{3}\right)+\left(\frac{4}{\hbar}-\frac{\beta}{4}\right)+\cdots+\left(\frac{N+1}{N+2}-\frac{N}{N+1}\right) \\
& =-\frac{1}{2}+\frac{N+1}{N+2}
\end{aligned}
$$

Here forward crossed terms like $\frac{2}{3}$ cancel with terms later in sum and backward crossed terms like 美 cancel with earlier terms.
Letting $N \rightarrow \infty$, we have $\sum_{n=1}^{\infty}\left(\frac{n+1}{n+2}-\frac{n}{n+1}\right)=-\frac{1}{2}+1=\frac{1}{2}$.
7. Recall that the alternating harmonic series converges conditionally.
a. From the Taylor series expansion for $f(x)=\ln (1+x)$, inserting $x=1$ gives the alternating harmonic series. What is the sum of the alternating harmonic series?
The Taylor series expansion for $f(x)=\ln (1+x)$ is given by

$$
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}
$$

Inserting $x=1$ gives the sum of the alternating harmonic series

$$
\ln 2=1-\frac{1}{2}+\frac{1}{3}-\ldots=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}
$$

b Because the alternating harmonic series does not converge absolutely, a rearrangement of the terms in the series will result in series whose sums vary. One such rearrangement in alternating p positive terms and n negative terms leads to the following sum ${ }^{1}$:

$$
\begin{aligned}
\frac{1}{2} \ln \frac{4 p}{n}= & \underbrace{\left(1+\frac{1}{3}+\cdots+\frac{1}{2 p-1}\right)}_{p \text { terms }}-\underbrace{\left(\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2 n}\right)}_{n \text { terms }} \\
& +\underbrace{\left(\frac{1}{2 p+1}+\cdots+\frac{1}{4 p-1}\right)}_{p \text { terms }}-\underbrace{\left(\frac{1}{2 n+2}+\cdots+\frac{1}{4 n}\right)}_{n \text { terms }}+\cdots
\end{aligned}
$$

Find rearrangements of the alternating harmonic series to give the following sums; that is, determine p and n for the given expression and write down the above series explicitly; that is, determine p and n leading to the following sums.
i. $\frac{5}{2} \ln 2$.

In each case we need to rewrite the given expression in the form $\frac{1}{2} \ln \frac{4 p}{n}$ and select values for n and p. In the first problem we have

$$
\begin{aligned}
\frac{1}{2} \ln \frac{4 p}{n} & =\frac{5}{2} \ln 2 \\
& =\frac{1}{2} \ln 2^{5}=\frac{1}{2} \ln 32 .
\end{aligned}
$$

For this problem we can pick $n=1$ and $p=8$. Then, we would have

$$
\begin{aligned}
\frac{5}{2} \ln 2= & \left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}+\frac{1}{13}+\frac{1}{15}\right)-\frac{1}{2} \\
& +\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}+\frac{1}{31}\right)-\frac{1}{4}+\ldots .
\end{aligned}
$$

ii. $\ln 8$.

In this problem we have

$$
\begin{aligned}
\frac{1}{2} \ln \frac{4 p}{n} & =\ln 8 \\
& =\frac{1}{2} \ln 64
\end{aligned}
$$

For this problem we can pick $n=1$ and $p=16$. The rearranged series is then

$$
\begin{aligned}
\ln 8= & \left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}+\frac{1}{13}+\frac{1}{15}\right. \\
& \left.+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}+\frac{1}{31}\right)-\frac{1}{2}+\ldots .
\end{aligned}
$$

iii. 0 .

In this problem we have $\frac{1}{2} \ln \frac{4 p}{n}=0$. Therefore, $n=4 p$. We can pick $p=1$ and $n=4$. The rearranged series is then

$$
\begin{aligned}
0= & 1-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right)+\frac{1}{3}-\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}\right) . \\
& +\frac{1}{5}-\left(\frac{1}{18}+\frac{1}{20}+\frac{1}{22}+\frac{1}{24}\right)+\frac{1}{7}-\ldots
\end{aligned}
$$

iv. A sum that is close to π.

For this problem we have $\pi \approx \frac{1}{2} \ln \frac{4 p}{n}$, or $\frac{4 p}{n} \approx e^{2 \pi} \approx 535.4916560$. So, one choice is $n=1$ and $p=535.49 / 4 \approx 134$. Thus, there is one positive term followed by 134 negative terms, etc.
8. Determine the radius and interval of convergence of the following infinite series:
a. $\sum_{n=1}^{\infty}(-1)^{n} \frac{(x-1)^{n}}{n}$.

Using the nth Root Test, we have

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{|x-1|}{\sqrt[n]{n}}=|x-1|<1
$$

