# https://ebookyab.ir/solution-manual-relativity-narlikar/ 

Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

2

## Chapter 1

1. (i) $A^{0}=4, A^{1}=3, A^{2}=2, A^{3}=1$
$A_{i}=\eta_{i k} A^{k} \Rightarrow A_{0}=4, A_{1}=-3, A_{2}=-2, A_{3}=-1$
$A_{i} A^{i}=4^{2}-3^{2}-2^{2}-1^{2}=2>0 \Rightarrow A^{i}$ is timelike.
(ii) $x^{2}+y^{2}=1 \Rightarrow x d x+y d y=0 \Rightarrow d x=-\lambda y, d y=\lambda x$
$z=0 \Rightarrow d z=0, t=0 \Rightarrow d t=0$.
$c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2}=0-\lambda^{2} x^{2}-\lambda^{2} y^{2}-0=-\lambda^{2}<0$
Hence the tangent vector is spacelike.
(iii) $\phi \equiv x^{2}+y^{2}+z^{2}-c^{2} t^{2}=1$.

Normal vector is $\left(\frac{\partial \phi}{\partial t}, \frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) \equiv\left(-2 c^{2} t, 2 x, 2 y, 2 z\right)=A_{i}$ (say).

$$
\begin{gathered}
A^{i}=-2 t,-2 x,-2 y,-2 z \\
\Rightarrow A_{i} A^{i}=4 c^{2} t^{2}-4 x^{2}-4 y^{2}-4 z^{2}=-4<0
\end{gathered}
$$

Hence the normal vector is spacelike.
(iv) We have $\frac{d x^{1}}{d \lambda}=r \sin \theta, \frac{d x^{2}}{d \lambda}=r \cos \theta, \frac{d x^{3}}{d \lambda}=z, \frac{d x^{0}}{d \lambda}=\sqrt{r^{2}+z^{2}}$.

$$
\begin{gathered}
n_{i k} \frac{d x^{i}}{d \lambda} \frac{d x^{k}}{d \lambda}=-r^{2} \sin ^{2} \theta-r^{2} \cos ^{2} \theta-z^{2}+r^{2}+z^{2}=0 \\
\Rightarrow \text { The vector is null. }
\end{gathered}
$$

2. Using the electromagnetic field tensor $F_{i k}$, where

$$
\begin{gathered}
F_{01}=E_{1}, F_{02}=E_{2}, F_{03}=E_{3} \\
F_{32}=B_{1}, F_{13}=B_{2}, F_{21}=B_{3}
\end{gathered}
$$

$\mathbf{E}=\left(E_{1}, E_{2}, E_{3}\right), \mathbf{B}=\left(B_{1}, B_{2}, B_{3}\right)$ being the electric and magnetic field vectors in 3 dimensions, we use the special Lorentz transformation in the form

$$
x^{\prime i}=L^{i}{ }_{k} x^{k}
$$

with the non-zero components of $L^{i}{ }_{k}$ as $L_{0}^{0}=\gamma, L^{0}{ }_{1}=-\gamma v, L^{1}{ }_{0}=$ $-\gamma v, L^{1}{ }_{1}=\gamma$, and $L^{2}{ }_{2}=L^{3}{ }_{3}=1$.

The tensor transformation law gives $F_{i k} \rightarrow F_{i k}^{\prime}$, where

$$
F_{i k}^{\prime}=L_{i}{ }^{m} L_{k}{ }^{n} F_{m n} .
$$

We also have $L_{0}{ }^{0}=\gamma, L_{0}{ }^{1}=\gamma v=L_{1}{ }^{0}, L_{1}{ }^{1}=\gamma, L_{2}{ }^{2}=L_{3}{ }^{3}=1$.
So, for example

$$
\begin{aligned}
F_{01}^{\prime} & =L_{0}{ }^{0} L_{1}{ }^{1} F_{01}+L_{0}{ }^{1} L_{1}{ }^{0} F_{10} \\
& =\gamma^{2}\left(1-v^{2}\right) F_{01}=F_{01},
\end{aligned}
$$

i.e., $E_{1}^{\prime}=E_{1}$.

It can be easily verified that the other components transform as :

$$
\begin{gathered}
E_{2}^{\prime}=\gamma\left(E_{2}-v B_{3}\right), E_{3}^{\prime}=\gamma\left(E_{3}+v B_{2}\right) \\
B_{1}^{\prime}=B_{1}, B_{2}^{\prime}=\gamma\left(B_{2}+v E_{3}\right), B_{3}^{\prime}=\gamma\left(B_{3}-v E_{2}\right) .
\end{gathered}
$$

3. Let in its rest frame the two components of the length vector of the rod along and perpendicular to the direction of motion be $\left(l_{1}, l_{2}\right)$. Then

$$
\frac{l_{2}}{l_{1}}=\tan 60^{\circ}=\sqrt{3}
$$

In the frame $S$, the component $l_{2}$ has the same apparent length $l_{2}^{\prime}$ as before. The length $l_{1}$, however, appears contracted to

$$
l_{1}^{\prime}=l_{1} \sqrt{1-\frac{v^{2}}{c^{2}}}=l_{1} \sqrt{1-\left(\frac{3}{5}\right)^{2}}=\frac{4 l_{1}}{5} .
$$

Since $l_{2}^{\prime}=l_{2}$, we have the apparent angle of inclination of the rod as $\theta$, where

$$
\cot \theta=\frac{l_{1}^{\prime}}{l_{2}^{\prime}}=\frac{4 l_{1} / 5}{l_{2}}=\frac{4}{5} \times \frac{1}{\sqrt{3}},
$$

i.e., $\theta=\cot ^{-1}(4 / 5 \sqrt{3})$.
4. Let the 4 -momentum of the photon in the laboratory frame be

4

$$
p^{i}=(E, E \cos \theta, E \sin \theta, 0)
$$

After Lorentz transformation in the rest frame of the mirror it becomes

$$
p^{\prime i}=[\gamma E(1+v \cos \theta), \gamma E(v+\cos \theta), E \sin \theta, 0] .
$$

After reflection it will be

$$
p_{\mathrm{ref}}^{\prime i}=[\gamma E(1+v \cos \theta),-\gamma E(v+\cos \theta), E \sin \theta, 0] .
$$

Transforming back to the laboratory frame this becomes

$$
\begin{aligned}
p_{\mathrm{ref}}^{\prime i}= & {\left[\gamma^{2} E\{(1+v \cos \theta)+v(v+\cos \theta)\}, \gamma^{2} E\{-v(1+v \cos \theta)-(v+\cos \theta)\},\right.} \\
& E \sin \theta, 0]
\end{aligned}
$$

So $\cos \bar{\theta}$ after reflection will be

$$
\begin{aligned}
\cos \bar{\theta} & =\frac{\left|p^{2}\right|}{\left|p^{0}\right|}=\frac{\left(1+v^{2}\right) \cos \theta+2 v}{1+2 v \cos \theta+v^{2}} \\
& =\frac{\cos \theta+\frac{2 v}{1+v^{2}}}{1+\frac{2 v}{1+v^{2}} \cos \theta} \\
& =\frac{\cos \theta+\cos \alpha}{1+\cos \theta \cos \alpha}
\end{aligned}
$$

5. The Compton scattering formula in section 1.7.4 tells us that the wavelength change is given by

$$
\Delta \lambda=\frac{h}{m_{0} c}(1-\cos \theta)
$$

For $\theta=60^{\circ}, \cos \theta=\frac{1}{2}$ and $\Delta \lambda=h / 2 m_{0} c$.
6. Going back to the definition of $F_{i k}$, we use the fact that the expressions

$$
F_{i k} F^{i k} \text { and } \epsilon_{i j k l} F^{i j} F^{k l}
$$

# https://ebookyab.ir/solution-manual-relativity-narlikar/ 

Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)
are invariants. Substituting the values of the components we find that the first is proportional to $B^{2}-E^{2}$ and the second to $\mathbf{B} \cdot \mathbf{E}$.
7. $F_{i k} F^{i k}$ and $\epsilon_{i j k l} F^{i j} F^{k l}$ are invariants and as shown in Q.6, they are $B^{2}-E^{2}$ and $\mathbf{B} \cdot \mathbf{E}$.

Now by a Lorentz transformation we can give arbitrary values to $B$ and $E$ subject to the above invariants.

Consider the Lorentz frame in which $B$ and $E$ are parallel. Then $\mathbf{B} \cdot \mathbf{E}=0$ gives $B E=0$. Hence either $B=0$ or $E=0$. That is, either the magnetic or the electric field is zero.
8. The equation of motion of the charge is

$$
m \frac{d u^{i}}{d s}=q F_{k}^{i} u^{k}
$$

Let the orbit be in $x^{1}-x^{2}$ plane with the magnetic field in the $x^{3}-$ direction.
Then

$$
F_{i k}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & B & 0 \\
0 & -B & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The 3-velocity of the charge is $\mathbf{v}=(R \omega \cos \theta, R \omega \sin \theta, 0)$. This corresponds to a 4 -velocity

$$
u^{i}=\frac{1}{\sqrt{1-R^{2} \omega^{2}}}(1, R \omega \cos \theta, R \omega \sin \theta, 0)
$$

The equation of motion then has these components:

$$
\begin{aligned}
& \frac{m}{\sqrt{1-R^{2} \omega^{2}}} \frac{d}{d t}\left(\frac{R \omega \cos \theta}{\sqrt{1-R^{2} \omega^{2}}}\right)=-q B \frac{R \omega \sin \theta}{\sqrt{1-R^{2} \omega^{2}}} \\
& \frac{m}{\sqrt{1-R^{2} \omega^{2}}} \frac{d}{d t}\left(\frac{R \omega \sin \theta}{\sqrt{1-R^{2} \omega^{2}}}\right)=q B \frac{R \omega \cos \theta}{\sqrt{1-R^{2} \omega^{2}}}
\end{aligned}
$$

Both these equations lead to

# https://ebookyab.ir/solution-manual-relativity-narlikar/ 

$$
\frac{m R \omega}{1-R^{2} \omega^{2}} \dot{\theta}=q B \frac{R \omega}{\sqrt{1-R^{2} \omega^{2}}},
$$

Since $\dot{\theta}=\omega$,

$$
B=\frac{m \omega}{q \sqrt{1-R^{2} \omega^{2}}} .
$$

9. The Doppler spectral shift is given by

$$
1+z=\frac{1+v \cos \theta}{\sqrt{1-v^{2}}} .
$$

For zero shift $z=0$ and

$$
\begin{gathered}
\sqrt{1-v^{2}}=1+v \cos \theta \\
\text { i.e., } \theta=\cos ^{-1} \frac{\sqrt{1-v^{2}}-1}{v} .
\end{gathered}
$$

10. We need to estimate $v$, the orbital velocity of the Earth. The EarthSun distance is $\approx 150$ million $\mathrm{km} \approx 1.5 \times 10^{13} \mathrm{~cm}$. The circumference of the orbit is (assuming circular shape)

$$
l=2 \pi \times 1.5 \times 10^{13} \mathrm{~cm}
$$

This distance is covered by the Earth in time $T=1$ year.

$$
T \cong 365 \times 24 \times 3600 \text { second } \approx 3.15 \times 10^{7} s
$$

Therefore

$$
v=\frac{2 \pi \times 1.5 \times 10^{13}}{3.15 \times 10^{7}} \cong 3 \times 10^{6} \mathrm{~cm} \mathrm{~s}^{-1}
$$

The order of magnitude of the effect, assuming $\sin \theta=0(1)$, is

$$
\alpha \cong \frac{2 v}{c} \approx \frac{6 \times 10^{6}}{3 \times 10^{10}} \text { radians }=2 \times 10^{-4} \text { radians } \approx 40 \mathrm{arsec}
$$

# https://ebookyab.ir/solution-manual-relativity-narlikar/ 

Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)
11. The answer is "no". For, if it were "yes", in the rest frame of the electron its 4 -momentum vector would be ( $m_{o} c^{2}, 0,0,0$ ). This must equal the sum of 4 -momenta of decay products. If the energy of the emitted photon were $h \nu$ and the electron, after decay, had a $\gamma$-factor $\geq 1$, we would have

$$
m_{o} c^{2}=\gamma m_{o} c^{2}+h \nu
$$

Since the right hand circle exceeds the left hand side for $\gamma \geq 1, \nu \geq 0$, we get a contradiction.
12. The 4 -momentum of the original particle is $\left(M_{0}, 0,0,\right)$. The decay products have $\gamma$ - factors, $\gamma, \gamma_{2}, \gamma_{3}$ releated by

$$
\gamma_{2} M_{2}=\gamma_{3} M_{3}=X(\text { say })
$$

Choose the $x$-axis along the direction of $M_{2}$ and $y$-axis along the direction of $M_{3}$. Then the 4-momenta of $M_{2}, M_{3}$ are $\left(\gamma_{2} M_{2}, \gamma_{2} v_{2} M_{2}, 0,0\right)$ and $\left(\gamma_{3} M_{3}, 0, \gamma_{3} v_{3} M_{3}, 0\right)$, respectively. The third decay product will move at an angle $\pi+\alpha$ with the $x$ - axis, say, with velocity $v_{1}$. Then its 4 -momentum is $\left(\gamma_{1} M_{1},-\gamma_{1} M_{1} v_{1} \cos \alpha,-\gamma_{1} M_{1} v_{1} \sin \alpha, 0\right)$. The conservation of momentum then gives these three relations:
$M_{0}=\gamma_{1} M_{1}+\gamma_{2} M_{2}+\gamma_{3} M_{3}=\gamma_{1} M_{1}+2 X$ where $X=$ energy of $M_{2}$ and $M_{3}$.

$$
\begin{aligned}
& 0=-\gamma_{1} M_{1} v_{1} \cos \alpha+\gamma_{2} M_{2} v_{2} \\
& 0=-\gamma M_{1} v_{1} \sin \alpha+\gamma_{3} M_{3} v_{3}
\end{aligned}
$$

We also have the identity $\gamma^{2}-\gamma^{2} v^{2}=1$ for all $\gamma \mathrm{s}$.
Thus $\gamma_{2}^{2} M_{2}^{2}-\gamma_{2}^{2} M_{2}^{2} v_{2}^{2}=M_{2}^{2} \Rightarrow X^{2}=M_{2}^{2}+X^{2} v_{2}^{2}$.
From the second and third momentum equations we get

$$
\begin{gathered}
\gamma_{1}^{2} M_{1}^{2} v_{1}^{2}=\gamma_{2}^{2} M_{2}^{2} v_{2}^{2}+\gamma_{3}^{2} M_{3}^{2} v_{3}^{2}=2 X^{2}-\left(M_{2}^{2}+M_{3}^{2}\right) \\
\text { i.e., } M_{1}^{2}\left(\gamma_{1}^{2}-1\right)=2 X^{2}-\left(M_{2}^{2}+M_{3}^{2}\right)
\end{gathered}
$$

