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Chapter 1. Heat Equation

Section 1.2

1.2.9 (d) Circular cross section means that P = 27r, A = 7r?, and thus P/A = 2/r, where r is the radius.
Also v =0.

1.2.9 (e) wu(z,t) = u(t) implies that
du _ 2h

cp E =

r

The solution of this first-order linear differential equation with constant coefficients, which satisfies the
initial condition u(0) = wuy, is

2h
u(t) = ug exp —at .

Section 1.3

1.3.2 Ou/0z is continuous if Ko(xg—) = Ko(xo+), that is, if the conductivity is continuous.

Section 1.4

1.4.1 (a) Equilibrium satisfies (1.4.14), d?u/dz? = 0, whose general solution is (1.4.17), u = ¢; + cax. The
boundary condition «(0) = 0 implies ¢; = 0 and w(L) = T implies ¢co = T/L so that u = Tz/L.

1.4.1 (d) Equilibrium satisfies (1.4.14), d?u/dxz? = 0, whose general solution (1.4.17), u = ¢; + coz. From
the boundary conditions, u(0) = T yields T' = ¢; and du/dz(L) = « yields a = ¢3. Thus u =T + azx.

1.4.1 (f) In equilibrium, (1.2.9) becomes d?u/dz* = —Q/Ko = —x? , whose general solution (by integrating
twice) is u = —2*/12 + ¢; + caz. The boundary condition u(0) = T yields ¢; = T, while du/dz(L) = 0
yields eo = L3/3. Thus u = —2*/12 + L3z /3 + T.

1.4.1 (h) Equilibrium satisfies d?u/dz? = 0. One integration yields du/dx = ca, the second integration
yields the general solution u = ¢; + cox.

x=0: ca—(c1—T)=0
t=L: ca=«aandthusc; =T + a.

Therefore, u = (T + ) + ax =T + a(z + 1).
1.4.7 (a) For equilibrium:

U iplies u =~ adu_

a2 plies u = 2+clm+CQan dr x4+ cy.
From the boundary conditions 9%(0) = 1 and 24(L) = 8,¢; = 1 and —L + ¢; = 3 which is consistent
only if 5+ L =1. If 8 =1 — L, there is an equilibrium solution (u = —% +ax+c) UB#£1-L,
there isn’t an equilibrium solution. The difficulty is caused by the heat flow being specified at both
ends and a source specified inside. An equilibrium will exist only if these three are in balance. This
balance can be mathematically verified from conservation of energy:

L du

d L
cpudmz——(O)—&-ﬁ(L)—i—/ Qo dx=-1+03+ L.
0

% 0 dzx

If B+ L =1, then the total thermal energy is constant and the initial energy = the final energy:

L L/ .2
/ flx) de = / <2 +x+ 02) dzx, which determines cs.
0 0

If B+ L # 1, then the total thermal energy is always changing in time and an equilibrium is never
reached.
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Section 1.5

1.5.9 (a) In equilibrium, (1.5.14) using (1.5.19) becomes - (r4) = 0. Integrating once yields rdu/dr = ¢
and integrating a second time (after dividing by r) yields u = ¢; Inr+c¢3. An alternate general solution
is w = ¢1In(r/r1) + ¢3. The boundary condition u(rq) = T3 yields ¢z = Ty, while u(re) = T5 yields

cr = (Ty = T1)/In(rz/r1). Thus, u = m (T2 —Th)Inr/ri 4+ TiIn(ra/r1)].

1.5.11 For equilibrium, the radial flow at r = a, 27a(, must equal the radial flow at » = b, 2wb. Thus 8 = b/a.

1.5.13 From exercise 1.5.12, in equilibrium £ (r?4%) = 0. Integrating once yields r?du/dr = ¢, and integrat-

ing a second time (after dividing by 72 ) yields u = —c; /7 + ¢2. The boundary conditions u(4) = 80

and u(1) = 0 yields 80 = —¢1/4 4+ ¢2 and 0 = —¢3 + 2. Thus ¢; = ¢o = 320/3 or u = % (1 — %)
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Chapter 2. Method of Separation of Variables

Section 2.3

2.3.1 (a) u(r,t) = ¢(r)h(t) yields ¢ = kb 4 ( ) Dividing by k¢h yields -9 = %di (r%) =—-Xor
dh— Akhand L (r42) = -0

2.3.1 (¢) u(x,y) = ¢(x)h(y) yields h (bd—h = 0. Dividing by ¢h yields i% = —%d% = —Xor
T9 = —Apand Lk = A,

2.3.1 (e) u(z,t) = ¢(z)h(t) yields ¢(z)9 = kh(t )dm4 Dividing by k¢h, yields /-4t = éd%‘f =\

2.3.1 (f) u(x,t) = ¢(z)h(t) yields ¢(z )d—h c2h(t ) ¢. Dividing by ¢2¢h, yields %% = édz—f =-A

2.3.2 (b) A= (nn/L)? with L =1 so that A = n?7%, n=1,2,.
2.3.2 (d)

(i) If X > 0,¢ = c1cosVAr + casinvAz. ¢(0) = 0 implies ¢; = 0, while %(L) = 0 implies
cavVAcos VAL = 0. Thus VAL = —7/2 + nn(n =1,2,...).
(ii) A =0,¢ =1+ cax. $(0) =0 implies ¢; = 0 and d¢/dz(L) = 0 implies c3 = 0. Therefore A = 0
is not an eigenvalue.
(iii) If A <0, let A = —s and ¢ = ¢; cosh \/sz + 3 sinh y/sz. ¢(0) = 0 implies ¢; = 0 and d¢/dz(L) = 0
implies co+/s cosh/sL = 0. Thus c2 = 0 and hence there are no eigenvalues with A < 0.

2.3.2 (f) The simpliest method is to let 2’ = 2 —a. Then d?¢/dx"? + A\ = 0 with ¢(0) = 0 and ¢(b—a) = 0.
Thus (from p. 46) L =b—a and A = [nw/(b—a)]*, n=1,2,....

2.3.3 From (2.3.30), u(x,t) = ZO" By, sin 22 o=k(nm/L)*t The initial condition yields

2cos 372 = 3" | B, sin 2L, From (2.3.35), B, = %fOL 2 cos 27E sin ML dg.

nm

2
2.3.4 (a) Total heat energy = fOL cpud dx = cpAdY | Bpe () tlzcosnm yging (2.3.30) where B,
L
satisfies (2.3.35).

2.34 (b)
heat flux to right = —Ky0u/0z
total heat flow to right = —KoAau/[“)x
heat flow out at x =0 = KOA‘?“
heat flow out (z = L) = —KOA

z=L

L
kg—z .= k%(L) - k%(O). Integrating from

2.3.4 (c) From conservation of thermal energy, <% fOL udr =

t = 0 yields
L L " Tou ou
/0 u(z,t) de 7/0 u(z,0) de = k/o [ax(L) ~ (0)] dz .

heat energy initial heat integral of integral of
at t energy flow in at flow out at
x=1L x=1L

2.3.8 (a) The general solution of k% = au (o > 0) is u(z) = acosh /S + bsinh \/$z. The boundary
condition u(0) = 0 yields a = 0, while «(L) = 0 yields b = 0. Thus u = 0.
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2.3.8 (b) Separation of variables, u = ¢(x)h(t) or (;5% + aph = kh%, yields two ordinary differential
equations (divide by k¢h): klh Gt e = %327? = —\. Applying the boundary conditions, yields the

eigenvalues A\ = (nm/L)? and corresponding eigenfunctions ¢ = sin =7%. The time-dependent part are

nww 7k(n7r/L) t
e , where

exponentials, h = e"*’e~*". Thus by superposition, u(z,t) = e~ > > b sin
the initial conditions u(z,0) = f(x) = Y, by sin 272 yields b, = %fo )sin 272 dx. As t — oo,

u — 0, the only equilibrium solution.

2.3.9 (a) If a < 0, the general equilibrium solution is u(x) = acos/ 5%z + bsin/Z*2. The boundary
condition u(0) = 0 yields a = 0, while u(L) = 0 yields bsin y/5*L = 0. Thus if /5% L # nm,u =0 is

the only equilibrium solution. However, if |/ 5*L = nx, then u = Asin *7* is an equilibrium solution.

2.3.9 (b) Solution obtained in 2.3.8 is correct. If —% = (%)

u(
If -2 < (% ) then v — 0 as t — oo. However 1f—%>(% 2,u—>oo(1fb17é0). Note that by > 0 if

f(z) > 0. Other more unusual events can occur if b; = 0. [Essentially, the other possible equilibrium
solutions are unstable.]

u(x,t) — by sin Z£ the equilibrium solution.

Section 2.4
2.4.1 The solution is given by (2.4.19), where the coefficients satisfy (2.4.21) and hence (2.4.23-24).

2 L nmwx

(a) Ao = %fLL/z ldr = 3, A, = %fLL/z cos *ptdy = T - oTsin A7F
(b) by inspection Ay = 6, A3 = 4, others = 0.

L _ _ 2 g, nmw
L/2 = a7 ST

(c) Ag=F fo sin % dox = 2 cos 2| = 2(1 —cosm) =4/, A, = %foLsmTcos DLy

(d) by inspection Ag = —3, others = 0.

2.4.3 Let 2/ = x — m. Then the boundary value problem becomes d?¢/dz'?> = —\¢ subject to ¢(—m) = ¢()
and d¢/dz'(—m) = d¢/dz’'(r). Thus, the eigenvalues are A\ = (nw/L)? = n?r?, since L = m,n =
0,1,2, ... with the corresponding eigenfunctions being both sinnwz’ /L = sinn(x—7) = (—1)" sinnz =>
sinnz and cosnmz’/L = cosn(x — w) = (—1)" cosnz => cosnz.

Section 2.5
2.5.1 (a) Separation of variables, u(z,y) = h(z)¢(y), implies that igm}; = —é% = —\. Thus d?h/dz* =
—MAh subject to A'(0) =0 and R'(L) = 0. Thus as before, A = (n7/L)?,n = 0,1,2,... with h(z) =
cosnma/L. Furthermore, o 2 =\p = (%)2 ¢ so that
n=0:¢=c + cay, where ¢(0 )=Oy1elds c1=0
n #0: ¢ = ci cosh “F¥ + ¢y sinh 72, where ¢(0) = 0 yields ¢; = 0.
The result of superposrtlon is
u(z,y) = A0y+ZA cos%snhnzy

n=1

The nonhomogeneous boundary condition yields

s .. nmH nmT
f(z)=A¢H + ZA” sinh 7 Cos A

n=1

so that

H
ApH = / f(z) dz and A, sinh nr / flx cos UL
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2.5.1 (c) Separation of variables, u = h(x)¢(y), yields %% = izzf = A. The boundary conditions

#(0) = 0 and ¢(H) = 0 yield an eigenvalue problem in y, whose solution is A\ = (n7/H)? with
¢ =sinnmy/H,n =1,2,3,... The solution of the z-dependent equation is h(z) = cosh nma/H using
dh/dx(0) = 0. By superposition:

y) = Z A, cosh % sin n—;}y
n=1

The nonhomogeneous boundary condition at z = L yields g(y) = >.. -, A, cosh 22~ ""L sin 7%, so that
A, is determined by A,, cosh % = % fOH g(y) sin "7 dy.

2.5.1 (e) Separation of variables, u = ¢(x)h(y), yields the eigenvalues A = (nm/L)? and corresponding
eigenfunctions ¢ = sinnmx/L,n = 1,2,3,... The y-dependent differential equation, 227}2‘ = (%)Qh7
satisfies h(0) — %(O) = 0. The general solution h = c¢; cosh ¥ + cysinh 72 obeys h(0) = ci,

while @ = L (01 sinh “7¥ + ¢, cosh “T¢ ) obeys %(0) = co%F. Thus, ¢; = c2%F and hence h,(y) =

cosh "”y + -L sinh 2T¥ Superp081t10n ylelds
o0
x,y) = Z Aphy(y)sinnrz/L,

where A, is determined from the boundary condition, f(z) = > 07, A,h,(H)sinnmrx/L, and hence

n=1

L
Anhn(H) = %/0 f(x)sinnmz/L dx .

2.5.2 (a) From physical reasoning (or exercise 1.5.8), the total heat flow across the boundary must equal
zero in equilibrium (without sources, i.e. Laplace’s equation). Thus fOL f(z) dz = 0 for a solution.

2.5.3 In order for u to be bounded as r — 0o0,¢; =0 in (2.5.43) and ¢ = 0 in (2.5.44). Thus,

u(r, ) = Z A,r~" cosnb + Z B, r " sinnf.
n=0 n=1

(a) The boundary condition yields Ay = In2, Aza=3 = 4, other A4,, =0, B, = 0.

(b) The boundary conditions yield (2.5.46) with a~"™ replacing a™. Thus, the coefficients are determined
by (2.5.47) with a™ replaced by a™"

2.5.4 By substituting (2.5.47) into (2.5.45) and interchanging the orders of summation and integration

u(r,0) = %/_ f(9)

Noting the trigonometric addition formula and cos z = R.[e%*], we obtain

u(r,0) = i/:; f(0) —% + Reni:[) (g)n ei"(a_é)l df.

Summing the geometric series enables the bracketed term to be replaced by

+Z( ) cosn@cosn@—l—sinn@sinnG)] de.

—1+Re%:_l+ 1— Zcos(f — ) %_% N
2 1 — Lei0-0) 2 1—&-*—*608(9 0) 1—|————cos(0 0)

‘ 3
)
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2.5.5 (a) The eigenvalue problem is d?¢/df? = —\¢ subject to d¢/d9(0) = 0 and ¢(7/2) = 0. It can be
shown that A > 0 so that ¢ = cos VA0 where ¢(7/2) = 0 implies that cos vVAr/2 = 0 or VAr/2 =
—7/2 4+ nm,n = 1,2,3,... The eigenvalues are A\ = (2n — 1)2. The radially dependent term satisfies
(2.5.40), and hence the boundedness condition at r = 0 yields G(r) = r?"~!. Superposition yields

u(r,8) = Z At cos(2n — 1)6.
n=1
The nonhomogeneous boundary condition becomes

e 4 /2
f) = Z Apcos(2n—1)0 or A, = f/ f(6) cos(2n — 1)0 do.
T Jo

n=1

2.5.5 (¢) The boundary conditions of (2.5.37) must be replaced by ¢(0) = 0 and ¢(7/2) = 0. Thus, L = 7/2,
so that A = (nw/L)? = (2n)? and ¢ = sin 2% = sin2nf. The radial part that remains bounded at

r=0is G=rY* =2, By superposition,
o0
u(r,d) = Z AP sin2n6 .
n=1
To apply the nonhomogeneous boundary condition, we differentiate with respect to r:

% = Z A, (2n)r*tsin 2n6 .
n=1

The be at r =1, f(0) =Yo7 | 2nA, sin2n6 , determines A,,2nA, = 4 fw/z

~Jo '~ f(0)sin2n0 db.

2.5.6 (a) The boundary conditions of (2.5.37) must be replaced by ¢(0) = 0 and ¢(w) = 0. Thus L = m,
so that the eigenvalues are A\ = (n7/L)? = n? and corresponding eigenfunctions ¢ = sinnnf/L =

sinnf,n = 1,2, 3, ... The radial part which is bounded at r = 0 is G = rVA = pn. Thus by superposition
u(r,0) = Z Apr™sinnd .
n=1

The be at r = a, g(0) = > - | Aya”sinnb, determines A,, Aya™ = 2 [ g(0)sinnd db.

2.5.7 (b) The boundary conditions of (2.5.37) must be replaced by ¢'(0) = 0 and ¢'(7/3) = 0. This will
yield a cosine series with L = 7/3, A\ = (n7/L)? = (3n)? and ¢ = cosnnf/L = cos3nf,n =0,1,2,....
The radial part which is bounded at r =0is G = V2 =37 Thus by superposition

u(r,0) = Z A3 cos 3n0 .
n=0
The boundary condition at r = a, g(6) = >_»"; A,a®" cos 3nf, determines A,: Ag = 2 Oﬂ/g g(0) do
and (n # 0)A,a®" = & OW/?’ g(0) cos 3né db.
2.5.8 (a) There is a full Fourier series in 6. It is easier (but equivalent) to choose radial solutions that satisfy

the corresponding homogeneous boundary condition. Instead of ™ and »~™ (1 and In r for n = 0), we
choose ¢1(r) such that ¢1(a) = 0 and ¢2(r) such that ¢2(b) =0 :

oo /e n=0 o) =0
oilr) {(;) —(2)" nro @0 {(g) Z ()" nso
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2.5.9

2.5.9

Then by superposition

= Z cosnb [And1(r) + Bnoa(r)] + Z sinnf [Cré1(r) + Dnga(r)] .

n=1

The boundary conditions at r = a and r = b,

= " cosnd [An1(a) + Buoa(a)] + Z sinnd [Cpé1(a) + Dnoa(a)]

n=1

= Z cosnf [A,P1(b) + Bro2(b)] + Z sinnf [Cpd1(b) + Dy 2(D)]

n=1

easily determine A,,, B,,,Cy, D,, since ¢1(a) =0 and ¢2(b) = 0: D,¢(a) = * f f(0)sinnf db, etc.

(a) The boundary conditions of (2.5.37) must be replaced by ¢(0) = 0 and ¢(7/2) = 0. This is a
sine series with L = 7/2 so that A = (n7/L)? = (2n)? and the eigenfunctions are ¢ = sinnw/L =
sin2nf,n = 1,2,3,.... The radial part which is zero at r = a is G = (r/a)** — (a/r)?". Thus by

superposition, o
0= A |(5)" = (5) " smons

The nonhomogeneous boundary condition, f(6) =3 > A, [(2)% — (%)Qn} sin 2n, determines A,

A, {(5)2” _ (%)2”} — 4 [7/2 £(0) sin 2n0 df.

(b) The two homogeneous boundary conditions are in 7, and hence ¢(r) must be an eigenvalue problem.

By separation of variables, u = ¢(r)G(0), d2G/d6? = AG and 1294 4792 4 \¢ — 0 . The radial equation
is equidimensional (see p.78) and solutions are in the form ¢ = rP. Thus p? = —\ (with A > 0) so

that p = iv/A. rEVA = VAT Thyg real solutions are cos(v/A Inr) and sin(v/Aln7). It is more
convenient to use independent solutions which simplify at r = a, cos[v/AIn(r/a)] and sin[v/AIn(r/a)].
Thus the general solution is

¢ = ¢1 cos|VAIn(r/a)] 4 ¢z sin[V A In(r/a)].

The homogeneous condition ¢(a) = 0 yields 0 = ¢;, while ¢(b) = 0 implies sin[v/X1In(r/a)] = 0. Thus
VAIn(b/a) = nw, n = 1,2,3,... and the corresponding eigenfunctions are ¢ = sin {mr ingg;‘ﬂ The

solution of the 6 -equation satisfying G(0) = 0 is G = sinh v/A\f = sinh - (b /a) Thus by superposition
> . nmwf . In(r/a)
= A, sinh —L
u 7;1 sin In(b/a) sin [mrln(b/a)}

The nonhomogeneous boundary condition,

= 3 sin niﬂzsin nﬂ_ln(r/a)
_;An h2ln(b/a) [ ln(b/a)]

will determine A,. One method (for another, see exercise 5.3.9) is to let z = In(r/a)/In(b/a). Then
a <r<b, lets 0 < z < 1. This is a sine series in z (with L = 1) and hence

A, smhW / £(r)sin [WEEZZ;] dz

But dz = dr/rln(b/a). Thus

Ansinhﬂng)/a b/a / flr sm[ E;Z;] dr/r.
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