https://ebookyab.ir/solution-manual-biomechanics-oomens-brekelmans/

Contents

1
Answers to the exercises of chapter 1 page 1
2 Answers to the exercises of chapter 2 4
3 Answers to the exercises of chapter 3 5
4 Answers to the exercises of chapter 4 7
5 Answers to the exercises of chapter 5 9
6 Answers to the exercises of chapter 6 15
7 Answers to the exercises of chapter 7 18
8 Answers to the exercises of chapter 8 20
$9 \quad$ Answers to the exercises of chapter 9 22
10 Answers to the exercises of chapter 10 23
11 Answers to the exercises of chapter 11 25
12 Answers to the exercises of chapter 12 26
13 Answers to the exercises of chapter 13 27
14 Answers to the exercises of chapter 14 29
15 Answers to the exercises of chapter 15 38
16 Answers to the exercises of chapter 16 41
17 Answers to the exercises of chapter 17 48
18 Answers to the exercises of chapter 18 51

Answers to the exercises of chapter 1

Exercises

1.1 (a) $\left|\vec{e}_{i}\right|=1$
(b) $\vec{e}_{i} \cdot \vec{e}_{j}=0$ if $i \neq j$
$\vec{e}_{i} \cdot \vec{e}_{j}=1$ if $i=j$
(c) $\vec{e}_{x} \cdot\left(\vec{e}_{y} \times \vec{e}_{z}\right)=1$
(d) Definition of a right-handed orthonormal basis.
$1.2 \quad \vec{F}_{z}=\vec{e}_{x}-3 \vec{e}_{y}-5 \vec{e}_{z}$
1.3 (a)

$$
\underset{\sim}{a}=\left[\begin{array}{l}
0 \\
0 \\
4
\end{array}\right] \quad \underset{\sim}{b}=\left[\begin{array}{c}
0 \\
-3 \\
4
\end{array}\right] \quad \underset{\sim}{c}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
$$

(b)

$$
\begin{aligned}
\vec{a}+\vec{b} & =-3 \vec{e}_{y}+8 \vec{e}_{z} \\
3(\vec{a}+\vec{b}+\vec{c}) & =3 \vec{e}_{x}-9 \vec{e}_{y}+30 \vec{e}_{z}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =\vec{b} \cdot \vec{a}=16 \\
\vec{a} \times \vec{b} & =12 \vec{e}_{x} \\
\vec{b} \times \vec{a} & =-12 \vec{e}_{x}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& |\vec{a}|=4 \\
& |\vec{b}|=5
\end{aligned}
$$

Answers to the exercises of chapter 1

$$
\begin{aligned}
|\vec{a} \times \vec{b}| & =12 \\
|\vec{b} \times \vec{a}| & =12
\end{aligned}
$$

(e) $\phi=\arccos \left(\frac{4}{5}\right)$
(f) \vec{e}_{x} or $-\vec{e}_{x}$
(g)

$$
\begin{aligned}
\vec{a} \times \vec{b} \cdot \vec{c} & =12 \\
\vec{a} \times \vec{c} \cdot \vec{b} & =-12
\end{aligned}
$$

(h)

$$
\begin{aligned}
\vec{a} \vec{b} \cdot \vec{c} & =32 \vec{e}_{z} \\
(\vec{a} \vec{b})^{T} \cdot \vec{c} & =-24 \vec{e}_{y}+32 \vec{e}_{z} \\
\vec{b} \vec{a} \cdot \vec{c} & =-24 \vec{e}_{y}+32 \vec{e}_{z}
\end{aligned}
$$

(i) The vectors are independent, but not perpendicular. So the vectors \vec{a}, \vec{b} and \vec{c} form a suitable but non-orthogonal basis.
1.4

$$
\begin{aligned}
\vec{d}+\vec{e} & =3 \vec{a}+2 \vec{b}-3 \vec{c} \\
\vec{d} \cdot \vec{e} & =24
\end{aligned}
$$

1.5 (a) $\vec{a}_{z}=-25 \vec{e}_{z}$
(b) $\left|\vec{a}_{x}\right|=\left|\vec{a}_{y}\right|=5 ;\left|\vec{a}_{z}\right|=25$
(c) $\vec{a}_{x} \times \vec{a}_{y} \cdot \vec{a}_{z}=625$
(d) $\phi=\frac{\pi}{2}$
(e)

$$
\begin{aligned}
\vec{\alpha}_{x} & =4 / 5 \vec{e}_{x}+3 / 5 \vec{e}_{y} \\
\vec{\alpha}_{y} & =3 / 5 \vec{e}_{x}-4 / 5 \vec{e}_{y} \\
\vec{\alpha}_{z} & =-\vec{e}_{z}
\end{aligned}
$$

So the basis $\left\{\vec{\alpha}_{x}, \vec{\alpha}_{y}, \vec{\alpha}_{z}\right\}$ is right-handed and orthogonal.
(f)

$$
\begin{aligned}
\vec{b}= & 2 \vec{e}_{x}+3 \vec{e}_{y}+\vec{e}_{z} \\
& \text { so with respect to }\left\{\vec{e}_{x}, \vec{e}_{y}, \vec{e}_{z}\right\}, \quad \underset{\sim}{b}=\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right]^{T}
\end{aligned}
$$

$$
\vec{b}=\frac{17}{25} \vec{a}_{x}-\frac{6}{25} \vec{a}_{y}-\frac{1}{25} \vec{a}_{z}
$$

$$
\text { so with respect to }\left\{\vec{a}_{x}, \vec{a}_{y}, \vec{a}_{z}\right\}, \quad \underset{\sim}{b}=\frac{1}{25}[17-6-1]^{T}
$$

$$
\vec{b}=\frac{17}{5} \vec{\alpha}_{x}-\frac{6}{5} \vec{\alpha}_{y}-\vec{\alpha}_{z}
$$

so with respect to $\left\{\vec{\alpha}_{x}, \vec{\alpha}_{y}, \vec{\alpha}_{z}\right\}, \quad \underset{\sim}{b}=\frac{1}{5}[17-6-1]^{T}$
1.6 The triple product is zero. This means that the vectors are not independent. The vector \vec{a} is lying in the plane, that is defined by the vectors \vec{b} and \vec{c}. Relation: $2 \vec{a}-\vec{b}-\vec{c}=\overrightarrow{0}$.
1.7 Both operators are associated with a rotation.
1.8 (a) $a_{x} \vec{e}_{x}$
(b) $a_{x} \vec{e}_{x}+a_{y} \vec{e}_{y}$
(c) no effect
(d) $a_{y} \vec{e}_{x}-a_{x} \vec{e}_{y}+a_{z} \vec{e}_{z}$
(e) $a_{x} \vec{e}_{x}-a_{y} \vec{e}_{y}+a_{z} \vec{e}_{z}$

2

Answers to the exercises of chapter 2

Exercises

2.1 (a) $\vec{F}=\frac{5}{2} \sqrt{2} \vec{\epsilon}_{1}+\frac{1}{2} \sqrt{2} \vec{\epsilon}_{2}-4 \vec{\epsilon}_{3}$
(b) $|\vec{F}|=\sqrt{29}$
2.2 (a) $\vec{M}_{P}=\overrightarrow{0} \quad ; \quad \vec{M}_{R}=-2 \vec{e}_{z}$
(b) ${\underset{\sim}{\sim}}_{\sim}^{M}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{T} \quad ; \quad{\underset{\sim}{M}}_{R}=\left[\begin{array}{lll}0 & 0 & -2\end{array}\right]^{T}$
2.3 (a) 0
(b) $2 F \ell$ positive if counterclockwise
(c) $F \ell$ positive if counterclockwise
(d) $2 F \ell$ positive if counterclockwise
(e) $2 F \ell$ positive if counterclockwise
$2.4 \quad f=\frac{R}{r} F$
$2.5 \quad \vec{M}_{P}=6 \vec{e}_{x}-9 \vec{e}_{y}$
$2.6 \quad \vec{M}_{S}=12 \vec{e}_{z} \quad ; \quad \vec{M}_{E}=3 \vec{e}_{z}$
2.7 (a) $\vec{M}_{S}=3 \vec{e}_{y}+3 \vec{e}_{z}$
(b) $\vec{M}_{O}=-2 \vec{e}_{x}+22 \vec{e}_{y}+13 \vec{e}_{z}$

