Solutions to Exercises

D. Liberzon, Calculus of Variations and Optimal Control Theory

See the last page for the list of all exercises along with page numbers where they appear in the book.

Chapter 1

1.1

The answer is no.
Counterexample: on the (x_{1}, x_{2})-plane, consider the function $f(x)=x_{1}\left(1+x_{1}\right)+x_{2}\left(1+x_{2}\right)$. Let D be the union of the closed first quadrant $\left\{\left(x_{1}, x_{2}\right): x_{1} \geq 0, x_{2} \geq 0\right\}$ and some curve (e.g, a circular arc) directed from the origin into the third quadrant. The origin $x^{*}=(0,0)$ is clearly not a local minimum, because $f\left(x^{*}\right)=0$ but f is negative for small negative values of x_{1} and x_{2}. However, it is easy to check that the listed conditions are satisfied because the feasible directions are $\left\{\left(d_{1}, d_{2}\right): d_{1} \geq 0, d_{2} \geq 0\right\}$ and we have $\nabla f\left(x^{*}\right)=\binom{1}{1}$ and $\nabla^{2} f\left(x^{*}\right)=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$.

1.2

Example: on the $\left(x_{1}, x_{2}\right)$-plane, let $h_{1}(x)=x_{1}^{2}-x_{2}$ and $h_{2}(x)=x_{2}$. Then D consists of the unique point $x^{*}=(0,0)$ which is automatically a minimum of any function f over D. The gradients are $\nabla h_{1}\left(x^{*}\right)=\binom{0}{-1}$ and $\nabla h_{2}\left(x^{*}\right)=\binom{0}{1}$ and they are linearly dependent, hence x^{*} is not a regular point. It remains to choose any function f whose gradient at x^{*} is not proportional to $\binom{0}{1}$ - e.g., $f(x)=x_{1}+x_{2}$ works.

See also Example 3.1 .1 on pp. 279-280 in [Ber99].
Another example, a little more complicated but also more interesting, is to consider, on the $\left(x_{1}, x_{2}\right)$-plane, the functions $h_{1}(x)=x_{2}$ and $h_{2}(x)=x_{2}-g\left(x_{1}\right)$ where

$$
g\left(x_{1}\right)= \begin{cases}x_{1}^{2} & \text { if } x_{1}>0 \\ 0 & \text { if } x_{1} \leq 0\end{cases}
$$

Then $D=\left\{x: x_{1} \leq 0, x_{2}=0\right\}$. The point $x^{*}=(0,0)$ is not a regular point, and we can again easily choose f for which the necessary condition fails. The interesting thing about this example is that the tangent space to D at x^{*} is not even a vector space: it is a ray pointing to the left.

1.3

Let's do it for 2 constraints, then it will be obvious how to handle an arbitrary number of constraints. For $d_{1}, d_{2}, d_{3} \in \mathbb{R}^{n}$, consider the following map from \mathbb{R}^{3} to itself:

$$
F:\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right) \mapsto\left(\begin{array}{c}
f\left(x^{*}+\alpha_{1} d_{1}+\alpha_{2} d_{2}+\alpha_{3} d_{3}\right) \\
h_{1}\left(x^{*}+\alpha_{1} d_{1}+\alpha_{2} d_{2}+\alpha_{3} d_{3}\right) \\
h_{2}\left(x^{*}+\alpha_{1} d_{1}+\alpha_{2} d_{2}+\alpha_{3} d_{3}\right)
\end{array}\right) .
$$

The Jacobian of F at $(0,0,0)$ is

$$
\left(\begin{array}{ccc}
\nabla f\left(x^{*}\right) \cdot d_{1} & \nabla f\left(x^{*}\right) \cdot d_{2} & \nabla f\left(x^{*}\right) \cdot d_{3} \\
\nabla h_{1}\left(x^{*}\right) \cdot d_{1} & \nabla h_{1}\left(x^{*}\right) \cdot d_{2} & \nabla h_{1}\left(x^{*}\right) \cdot d_{3} \\
\nabla h_{2}\left(x^{*}\right) \cdot d_{1} & \nabla h_{2}\left(x^{*}\right) \cdot d_{2} & \nabla h_{2}\left(x^{*}\right) \cdot d_{3}
\end{array}\right) .
$$

Arguing exactly as in the notes, we know that this Jacobian must be singular for any choice of d_{1}, d_{2}, d_{3}. Since x^{*} is a regular point and so $\nabla h_{1}\left(x^{*}\right)$ and $\nabla h_{2}\left(x^{*}\right)$ are linearly independent, we can choose d_{1} and d_{2} such that the lower left 2×2 submatrix

$$
\left(\begin{array}{ll}
\nabla h_{1}\left(x^{*}\right) \cdot d_{1} & \nabla h_{1}\left(x^{*}\right) \cdot d_{2} \\
\nabla h_{2}\left(x^{*}\right) \cdot d_{1} & \nabla h_{2}\left(x^{*}\right) \cdot d_{2}
\end{array}\right)
$$

is nonsingular (for example, using the Gram-Schmidt orthogonalization process: choose d_{1} aligned with $\nabla h_{1}\left(x^{*}\right)$ and d_{2} in the plane spanned by $\nabla h_{1}\left(x^{*}\right)$ and $\nabla h_{2}\left(x^{*}\right)$ to be orthogonal to $\left.d_{1}\right)$. Since the Jacobian is singular, its top row must be a linear combination of the bottom two, linearly independent by construction, rows:

$$
\nabla f\left(x^{*}\right) \cdot d_{i}=\lambda_{1}^{*} \nabla h_{1}\left(x^{*}\right) \cdot d_{i}+\lambda_{2}^{*} \nabla h_{2}\left(x^{*}\right) \cdot d_{i}, \quad i=1,2,3 .
$$

Note that the coefficients λ_{1}^{*} and λ_{2}^{*} are uniquely determined by our choice of d_{1} and d_{2}, and do not depend on the choice of d_{3}. In other words, we have

$$
\nabla f\left(x^{*}\right) \cdot d_{3}=\lambda_{1}^{*} \nabla h_{1}\left(x^{*}\right) \cdot d_{3}+\lambda_{2}^{*} \nabla h_{2}\left(x^{*}\right) \cdot d_{3} \quad \forall d_{3} \in \mathbb{R}^{3}
$$

from which it follows that $\nabla f\left(x^{*}\right)=\lambda_{1}^{*} \nabla h_{1}\left(x^{*}\right)+\lambda_{2}^{*} \nabla h_{2}\left(x^{*}\right)$.

1.4

This is Problem 3.1.3 in [Ber99], page 292 (an easier version appears earlier as Problem 1.1.8, page 19). The function being minimized is $f(x)=|x-y|+|x-z|$. Writing $|x-y|$ as $\left((x-y)^{T}(x-y)\right)^{1 / 2}$, and similarly for $|x-z|$, it is easy to compute that

$$
\nabla f\left(x^{*}\right)=\frac{x^{*}-y}{\left|x^{*}-y\right|}+\frac{x^{*}-z}{\left|x^{*}-z\right|}
$$

By the first-order necessary condition for constrained optimality, this vector must be aligned with the normal vector $\nabla h\left(x^{*}\right)$. Geometrically, the fact that the two unit vectors appearing in the above formula sum up to a constant multiple of $\nabla h\left(x^{*}\right)$ means that the angles they make with it are equal.

1.5, 1.6

These follow easily from the definitions of the first and second variation by writing down the Taylor expansion of $g(y(x)+\alpha \eta(x))$ around $\alpha=0$ inside the integral:

$$
J(y+\alpha \eta)=\int_{0}^{1} g(y(x)+\alpha \eta(x)) d x=\int_{0}^{1}\left(g(y(x))+g^{\prime}(y(x)) \alpha \eta(x)+\frac{1}{2} g^{\prime \prime}(y(x)) \alpha^{2} \eta^{2}(x)+o(\alpha)\right) d x .
$$

The second variation is

$$
\left.\delta^{2} J\right|_{y}(\eta)=\frac{1}{2} \int_{0}^{1} g^{\prime \prime}(y(x)) \eta^{2}(x) d x
$$

This example also appears in Section 5.5 of [AF66].

1.7

Let $V=C^{0}([0,1], \mathbb{R})$ with the 0 -norm $\|\cdot\|_{0}$, let $A=\left\{y \in V: y(0)=y(1)=0,\|y\|_{0} \leq 1\right\}$, and let $J(y)=\int_{0}^{1} y(x) d x$. It is easy to see that A is bounded, that J is continuous, and that J does not have a global minimum over A because the infimum value of J over A is -1 but it's not achieved for any continuous curve. What's not obvious is that A is closed, because to show this we must show that if a sequence of continuous functions $\left\{y_{k}\right\}$ converges to some function y in 0 -norm then the limit y is also continuous. The proof of this goes as follows. To show continuity of y, we must show that for every $\varepsilon>0$ there exists a $\delta>0$ such that when $\left|x_{1}-x_{2}\right|<\delta$ we have $\left|y\left(x_{1}\right)-y\left(x_{2}\right)\right|<\varepsilon$. Let k be large enough so that $\left\|y_{k}-y\right\|_{0} \leq \varepsilon / 3$, and let δ be small enough so that $\left|y_{k}\left(x_{1}\right)-y_{k}\left(x_{2}\right)\right|<\varepsilon / 3$ whenever $\left|x_{1}-x_{2}\right|<\delta$ (using continuity of y_{k}). This gives

$$
\left|y\left(x_{1}\right)-y\left(x_{2}\right)\right| \leq\left|y\left(x_{1}\right)-y_{k}\left(x_{1}\right)\right|+\left|y_{k}\left(x_{1}\right)-y_{k}\left(x_{2}\right)\right|+\left|y_{k}\left(x_{2}\right)-y\left(x_{2}\right)\right|<\varepsilon
$$

and we are done. See also [Rud76, p. 150, Theorem 7.12] or [AF66, p. 103, Theorem 3-11] or [Kha02, p. 655] or [Sut75, p. 120, Theorem 8.4.1].

