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1. COMBINATORIAL
ARGUMENTS

(©Douglas B. West
1.1. CLASSICAL MODELS

1.1.1. When rolling n dice, the probability that the sum is even is 1/2. No
matter what is rolled on the first n — 1 dice, the last die has three even
values and three odd values, so in each case the probability of ending with
an even total is 1/2.

1.1.2. There are (3)(3) rectangles with positive area formed by segments in
a grid of m horizontal lines and n vertical lines. Positive area requires two
distinct horizontal boundaries and two distinct vertical boundaries.

1.1.3. There are ("°)2175° words consisting of r consonants and s vowels.

There are ('+s) ways to allocate the positions to consonants and vowels
and then 2175° ways to fill those positions.

1.1.4. There are (333) outcomes of an election with 30 voters and four candi-

dates, (333) - 4( 137) with no candidate having more than half of the votes. If
the votes are considered distinct, then there are 43° outcomes. However,
votes go into a ballot box, so an outcome is determined just by the num-
ber of votes for each candidate. Thus we want the number of nonnegative
integer solutions to x; + xg + x3 + x4 = 30, which is (3‘):_41_ 1).

When one candidate receives at least 16 votes, the outcomes are the
ways to distribute the remaining 14 votes arbitrarily, since votes are in-
distinguishable. Only one candidate can have a majority, but that can be
any one of the four, so there are 4(137) outcomes we exclude.

1.1.5. For n € N, the expression (n® — 5n% + 4n)/120 is a integer. Since
—5n3+4n = n(n®2-1)(n2-4) = (n+2)(n+1)n(n—1)(n—2), the expression
equals (";2), which is the number of was to choose five objects from a set

of size n + 2. This by definition is an integer.

1.1.6. 13!40! orderings of a deck of cards such that the spade suit appears
consecutively. There are 13! ways to order the spade suit and 39! ways to
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order the remaining cards. There are then 40 ways to insert the ordered
spade suit among the other cards. Alternatively, condense the spade suit
to a single item, order the items in 40! ways, and the expand the spade
into 13! orderings of the spade suit.

1.1.7. The probability of having at least three cards with the same rank in
a set of five ordinary cards is %. Among five cards, only one rank can
appear at least three times; pick it in 13 ways. When all four cards of this
rank appear, there are 48 ways to pick the remaining card. When only
three appear, there are four ways to pick the missing suit of this rank and
(?) ways to pick the other two cards. Hence there are 13-48-(1 +4-47/2)
suitable sets of five cards. The desired probability is the ratio of this to

(552). Canceling factors in % yields the claimed probability.

1.1.8. From a standard 52-card deck, There are 13* - 304 sets of six cards
having at least one card in every suit. We may have three cards in one suit
and one in each other in 4 - (133)133 ways. We may have two cards in each

of two suits and one card in the other two in (;)(123)2132 ways. These are
the only choices; we sum them.

1.1.9. There are 10-9-8-142 integers from 0 to 99, 999 in which each digit
appears at most twice (counting leading Os as appearances. Consider cases
by how many different digits are used. There are 105, integers using five

digits. There are 10(3)9 integers using four digits; first pick and place
the repeated digit. When three digits are used, two are used twice; hence
the number of integers of this type is 10-5-9- (;) -8. Summing the three
cases yields the answer.

1.1.10. There are 11(')(8) distinguishable ways to order the letters of “Mis-
sissippi”. Choosing positions for the types of letters in stages, always the
number of ways to do the next stage does not depend on how the previous
stages were done. We place “M” in 11 ways, then choose four positions for

“i” among the remaining 10 in (%)) ways, then choose four positions for

“s” among the remaining 6 in (2) ways, the put “p” in the remaining two

positions. The rule of product then yields the answer.

1.1.11. From four colors of marbles, there are (135) distinguishable ways to

have 12 marbles. There are 4'? ways to have 12 of the marbles in a row. For
distinguishable selections with repetition, we use the multiset formula:
(12;_41‘ 1). The number of ways to arrange a multiset depends on the num-
ber of elements of each type. However, when we put the elements in a row
we are just making words: each position may have one of the four types,

and all such words are distinguishable.
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1.1.12. If each New York City resident has a jar of 100 coins chosen from
five types, then some two residents have equivalent jars. The number of
distinguishable jars of coins is the number of multisets of size 100 from
five types. Using the formula (":’_’;1) for selections of k elements from n
types, the value is (124), which equals 4,598,126. Without being precise,
cancelling factors yields 13-103-34-101, which is clearly less than 5-108,
Since New York City has more than 7 - 108 residents, the claim follows.

1.1.13. When k is even, there are 2¥2~1 compositions of k with every part
even (there are none when k is odd). Halving each part yields a composition
of k/2, and the map is reversible. There are 2"~ compositions of 7.

1.1.14. Families of subsets.

a) There are 2" — 217/2] sybsets of [n] that contain at least one odd num-
ber. There are 2" subsets of [n]. Among these, 21"/2| subsets are restricted
to the set of even numbers. The remainder have at least one odd number.

b) There are (" t*') k-element subsets of [n] that have no two consecu-
tive integers.

Proof 1. When choosing & elements, the remaining n — £ must dis-
tribute among them to have at least one between each successive pair
of chosen elements. Knowing how many go in each slot determines the
k elements selected. Hence the legal choices correspond to solutions to
X9+ x1+ -+ xr = n—ksuch that x1, ..., xx—1 are positive and x¢, xx
are nonnegative. Subtracting 1 from the variables required to be posi-
tive transforms these into nonnegative integer solutionsof yo +---+y; =
n — 2k + 1. By the selections with repetition model, the number of solu-
tions is (""2KLHAHI-1) which simplifies to ("7F*1).

Proof 2. View the n—k unchosen integers as dots in a row. We choose
places for the selected integers between the dots (and on the ends), but
avoidance of consecutive integers requires that no space is selected twice.
We have n—k+1 allowable places and choose & of them for bars. The bars
now mark the positions of & selected numbers.

¢) There are n! choices of subsets Ag, A1 ... A, of [n] such that Ay C
Ay C--- C A,. Thereare (n + 2)" choices such that Ag C A; C --- C A,.
When the sets have distinct sizes, we have |A;| = i, since all the sizes are
between 0 and n. Hence Ay = @, and the elements of [n] are added one by
one in some order. The n! possible orders correspond to the chains.

To determine a chain of the second type, it suffices to specify for each
x € [n] the index i such that x first appears in the chain at A;. Not ap-
pearing at all is also an option. Hence there are n + 2 choices available
for each x, and the choice made for x is not restricted by the choices made
for other elements.
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1.1.15. The exponent on a prime p in the prime factorization of (2n”) is the
number of powers p* of p such that [2n/ka is odd. We use the formula
(2:) =@ In m!, [m/pJ factors are divisible by p. In [m/p2J of these,

nln!*
we have ;n extra factor of p. In [m/ p3J , we have yet another factor of p,
and so on. Hence the highest power of p that divides m! is ), kZIlm/ p"J .

When | 2n/p*| is even, the number of multiples of p* in [2n] is twice
the number in [n]; for example | 10/2| = 4, and | 5/2| = 2. When | 2n/p|
is odd, we get one extra: [6/2] =3, but [3/2] = 1. The latter case occurs
if and only if the remainder of n upon division by p* is at least p*/2.

Since the factors of p in the factorization of n! are used (twice) to can-
cel factors of p in the factorization of (2n)!, we thus find that (2n)! keeps
an extra factor of p for each £ where l2n/ ka is odd.

Prime factors of (%) and (3). A prime p will be a factor if | 2n/p| is
odd for some k. We have | 18/2| = 9 and | 20/4| = 5, so 2 divides both.
Since [18/3] = [20/3] =6 and l18/9J = [20/9] = 2, 3 divides neither.

For higher primes, the squares are too big to give a nonzero contri-
bution. We have | 18/5| = 3 but | 20/5] = 4, so 5 divides ('5) but not (20).
Since [18/7] = [20/7] = 2, 7 divides neither. However, 11, 13, and 17
yield 1 in each case, as does 19 in the latter case. Hence the prime divisors
of (%)) are {2, 5,11, 13,17}, and those of (3;) are {2,11,13,17,19}.

1.1.16. Given v(a, b) = ((,%,), (5), (,5,)), there do not exist distinct pairs
(a, b) and (c, d) of positive integers such that v(c, d) is a multiple of v(a, b).
Suppose v(c, d) = xv(a, b). We have () = x({), and then

d c\ _( ¢ \_ a \_ b a) _ b c
c—d+1(d) - (d—l) _x(b—l) _xa—b+1(b) T a-b+ 1(d)

c—dfc\_[ c \_ a \_ a-bfal _a-bfc

d+i\d) " \d+1) " "\b+1) " "b+1 b)_b+1 d)
Thus (a —b+1)d =(c—d+1)band (b+ 1)(c—d) = (d + 1)(a — b). The
difference of these two equations yieldsd —a+b = b—c+d, and hence a =
c. Now, since (,7,) = £2(%) and (;¢;) = 52(5), and the ratios of (§) to ()
and (,2,) to (;5,) are the same, we have &2 = <4, Thus (d + 1)(a — b) =
b+ 1)c—d)=(b+1)a—d). We obtain (a + 1)(d — b) = 0, so also d = b.
1.1.17. There are (77;)("}") lists of m 1s and n Os having k runs of Is.

Proof 1 (case analysis). The number of runs of Os may be k£ — 1 (start

and end with 1s), £ + 1 (start and end with 0s), or k (two cases, starting
with Os or with 1s). In each of these four cases, forming compositions of
m and n with the right number of parts completely specifies the list.
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m—1
k-1
the factor is (;_3) or (*;') or (}_1), the last in two cases. Summing these
and applying Pascal’s Formula three times yields (771)("}').

Proof 2 (direct arguments). After forming a composition with &
parts in (’,?__11) ways for the 1s, these k£ nonempty runs are put into n + 1
possible locations among the Os (or at the ends). Runs of 1s go into dis-
tinct locations among the 0s, so there are ("}') ways to place them. [One
can also place the 0s, with repetition allowed, among the runs of 1s, en-
suring that the £ — 1 interior locations are nonempty. The number of
ways is then the number of multisets of size n — k£ + 1 from k& + 1 types.]

For the 1s, we have (;~; ) compositions of m with & parts. For the 0s,

1.1.18. Runs in subsets.

a) The number of subsets of [n] with k runs is (!). The runsina
subset correspond to runs of 1s in the incidence vector, separated by runs
of 0s. We can specify the runs by inserting a bar before and after each
run, separating it from the neighboring positions. Since there is at least
one 0 between two runs of 1s in the incidence vector, the bars are placed
in distinct positions. The allowable positions are between entries of the
incidence vector, plus at the beginning or end. To specify &k runs, we pick
2k of these n + 1 positions, so the answer is ().

Comment: There is also an analysis that considers cases depending
on whether the first and/or last element is used or not. The cases yield

binomial coefficients that combine to (') by Pascal’s Formula.

b) The number of t-element subsets of [n] with k runs is (,t;ll)(”,i").
Determining the length of each run and the distances between runs de-
termines the subset. Again consider the 2k bars specifying the runs;
this time we must distribute ¢ positions within the runs and n — ¢ out-
side them. By adding positions 0 and n + 1 as extra positions before the
first run and after the last, we guarantee £+ 1 nonempty bins outside the
runs and have two composition problems. We need a composition of ¢ with
k parts to specify the lengths of the runs and a compositionof n + 2 — ¢
with k£ + 1 parts to specify the locations of the runs. There are (,‘;11) of

the former and (";2;“7") of the latter, and we choose them independently.

¢) The number of t-element subsets of [n] having exactly r; runs of length
sifor1<i<m,wherek =Y riandt =31, rs;is H:,fl!ri!(”*',t_t). Now
we are given the lengths of the runs of 1s. To form the incidence vector,
we permute them and position them. There are again & runs with total
length ¢, so the factor (’”é‘t) for separating the runs of 1s remains. The
runs can come in any order. However, all r;! ways of ordering the r; runs
of length i produce the same subset of [n] (we assume that sy, ..., s, are
distinct). Thus there are k!/[]~, ;! ways to order the runs of 1s.
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1.1.19. The number of binary strings of length n in which the number of
copies of 00 is the same as the number of copies of 11 is 2 when n = 1 and
is 2([n'/‘2_]2_1) when n > 1. For n = 1, both strings are counted.

Consider n > 1. Let a and b be the number of 0s and number of 1s,
respectively. If there are i runs of 0 and j runs of 1, then there are a — i
copies of 00 and b — j copies of 11.

If the first and last bits differ, then i = j, and the desired condition
holds if and only if @ = b, which requires n even. If the first and last
bits are 0, theni = j + 1, and we need @ = b + 1, which requires n odd.
Similarly, we need a + 1 = b and n odd when the first and last bits are 1.

The needed property of the first and last bits holds in two ways. Af-
ter ensuring this, the needed condition on a and b is satisfied in ((n’i_Z?/Z)

strings when n is even and in ((n':?/z) when n is odd. Thus the answer is

2([n’/‘2_]2_1) in both cases. The formula is not valid when n = 1 because the
first and last bits are the same.

1.1.20. The number of elements of [3]" with k odd entries having no 1 next
toadisy o ("-j?“)(f:})zf . Let j be the number of runs of odd entries.
Each run is all-1 or all-3, independently, since any two successive runs
of odd entries are separated by at least one 2. With k£ odd entries in j
runs, the run lengths of odd entries form a composition of £ with j parts.
Hence there are (f.:})2j ways to form the sublist of odd entries.

Altogether there are n—k copies of 2. These are distributed into j+1
buckets, and all but the first and last must be nonempty (the list may or
may not start or end with a 2). Hence there are (”_f.“) ways to distribute
the copies of 2.

Summing over the possibilities for j completes the proof.

1.1.21. Inside a convex n-gon, (Z ) pairs of chords cross.

Proof 1 (brute force). Let a, be the answer. Let vy,..., v, be the
vertices in order. The vertices vy, ..., v,_; form a convex (n — 1)-gon, and
within it a,_; pairs of chords cross. To this we add the crossings involv-
ing chords at v,. The chord from v, to vt crosses (k — 1)(n — k — 1) other
chords, so a, = a,-1 + Zz;g(k —1)(n — k—1). With a3 = 0, we have
A=Yy Z;;z(k —1)(r — k£ — 1). Proof by induction after guessing the
answer from data, or application of identities from Section 1.2, may lead
you to the answer (}).

Proof 2 (combinatorial understanding). Each crossing involves two
chords. Those two chords involve four endpoints. Thus every crossing cor-
responds to four points on the n-gon. Furthermore, each set of four points
on the n-gon is the set of endpoints for exactly one pair of crossing chords.
Hence the number of crossing pairs is (2)
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7 Chapter 1: Combinatorial Arguments

1.1.22. If no three chords have a common internal point in the picture
formed by drawing all (3) chords of a convex n-gon, then the number of tri-
angles is (3) +4(}) + 5(%) + (5). We count the triangles according to how
many corners lie on the boundary of the n-gon. A triangle with three
boundary corners is determined by choosing three vertices of the n-gon.

A triangle with two boundary corners has a full chord as one side,
and the other two sides extend to form full chords. The endpoints of these
three chords are four points on the boundary. Hence such a triangle is
associated with four vertices of the n-gon, chosen in (}) ways. On the
other hand, each choice of four vertices yields four such triangles.

A triangle with one boundary corner is determined by two chords
from that point and one chord that crosses both of them. This leads to
five vertices on the boundary. Each choice of five vertices determines five
triangles in this way, so the number of triangles of this type is 5(%).

A triangle with no boundary corners is determined by three chords
with no common endpoints, obtained by extending the sides. Thus six ver-
tices must be chosen from the boundary to draw the chords. Each choice
of six yields exactly one such triangle, with opposite pairs forming pair-
wise crossing chords.

Comment: Other ways to group and count the triangles produce more
complicated formulas, which can be simplified to that above via identi-
ties. Having obtained a simple formula, one seeks a simple proof....

1.1.23. Rolling dice. Six dice each have three red faces, two green faces,
and one blue face. The probability that three red faces, two green faces,
and one blue face will show when all six are rolled is 5/36.

The six dice are objects; each shows some face. The number of ar-
rangements of RRRGGB is (5)(3), which equals 60. Each has probability

(3)3(2)%(3)* of occurring. Hence the desired probability is 60-(27-4-1)/68.

1.1.24. In poker, a straight is more likely than a flush. The number of sets
of five cards from one suit is 4(*%). For the number of sets of five cards
with consecutive values, the lowest value can be any number from 1 to 10
(an ace can be considered high or low). Hence there are 10 - 4% such sets.
After canceling common factors, the ratio of the number of straights to

number of flushes simplifies to 19225, which is about 1.989.

1.1.25. The number of trapezoids defined by vertices of a regular n-gon is
n("D'2) if n is odd and (n — 3)("}?) if n is even. It suffices to count the
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pairs of parallel chords. Chords are parallel to a side or (when 7 is even)
perpendicular to a diametric chord.

When n is odd, the number of chords parallel to a given side is (n —
1)/2. Picking a side and picking two such chords yields the answer. The
resulting trapezoids are distinct, because none are parallelograms since
any two parallel chords have different lengths.

When n is even, the same analysis gives %("42) pairs of chords parallel
to sides. For any diametric chord, there are (n — 2)/2 chords perpendic-
ular to it, yielding %((”_22)/ 2) pairs of such chords. Every parallelogram
has been counted twice. Each parallelogram is determined by having

two specified corners among the first n/2 vertices, so there are ("42) par-

alleograms. Thus the number of trapezoids is %(”42) + %(”/ 22_1) - (”42),

which equals (n — 3)("?).

1.1.26. The largest displacement d(r) of a permutation of [n] is [n2/2J,
where d(w) = ¥, |i — 7(i)]. Define n’ from = by switching the elements
in positions i and i + 1. If these elements are both at most i or both at
least i + 1, then d(n’) = d(x). In the remaining case, one element is at
most i and the other is at least i + 1. Now the displacement is greater (by
2) in the permutation in which the larger of the entries in positions i and
i+ 1 is in position i.

We conclude that if any two adjacent entries are in increasing order,
then transposing them does not decrease the displacement. Hence the
displacement is maximized by a permutation in which no two consecu-
tive elements are in increasing order. The only such permutation is the
reverse of the identity permutation. The displacement of this permuta-

tion is 252/12] 2(n — i), which equals | n%/2]|.

1.1.27. Bijection from the set A of permutations of [n] to the set B of n-tuples
(by,...,b,)such that 1 < b; <iforeachi. Eacha=a;,...,a, € Aisa
list of numbers. For each i, let b; be the position of i in the sublist of a
formed by the elements of [i]. Let f(a) be the resulting list b4, ..., b,.
By construction, 1 < b; <i, so f(a) € B.

To prove that f is a bijection, we describe a function g: B — A. We
build g(b) from an empty list by inserting numbers in the order 1, ..., n.
Before inserting i, the list consists of {1,...,i— 1}. We insert i to have
position b;. After processing b, we have a permutation of [n].

To prove that f and g are bijections, it suffices to show that they are
injective (in fact g = f~!), since A and B are finite and have the same
size. First consider f. Given distinct permutations in A, there is some
least value j such that the subpermutations using elements 1, ..., j are
different. Since they are the same earlier but differ at the jth step, the
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corresponding values of b; are different.
For g, if two elements of B differ first at the jth index (b; # &%), then
the subpermutations of 1, ..., j in the two image permutations éiffer.
This bijection can also be described inductively.

1.1.28. The number of exchanges of elements in a permutation needed to
break all original adjacencies is [ (n—1)/4], for n > 6. Number to ele-
ments from 1 to n in order. Since two elements are moved, at most four
original adjacencies can be broken by each exchange. There are n — 1
original adjacencies; this proves the lower bound.

To achieve the bound, exchange 2i with 2[(n —1)/4] + 2, for 1 <i <
r, where r = [(n— 1)/4J. When 4 | (n — 1), the first 2r even numbers
are moved, while all odd numbers remain fixed, and all adjacencies are
broken. When 4 t (n — 1), element 2r + 2 has been skipped and remains
adjacent to 2r — 1 and 2r + 1. For the last switch, exchange 2r + 2 with
n when 4 | n, and exchange 2r + 2 with 1 when 4 dividesn — 2 or n — 3.

1.1.29. There are (n!)** 0, 1-matrices with n? rows and n?® columns such
that (1) each row and column has exactly one 1, and (2) when the matrix is
partitioned into n? blocks of n consecutive rows and n consecutive columns,
each block contains exactly one 1.

Choose the position of the 1 in each n-by-n tile successively, going
across a row of tiles from left to right, processing rows in order from top
to bottom. There are (n —i + 1)(n — j + 1) choices available when dealing
with the jth tile in the ith row, due to the i —1 tiles above it and the j—1
tiles to its left. In the ith row, the product of the numbers of choices is
(n—1i+ 1)"n!, so over all rows we obtain (m!)*(n!)™.

More generally, when a square of size mn is divided into mn rectan-
gular tiles of width m and height n (globally, m rows of n tiles), the same
argument shows that the number of permutation matrics of order mn
having exactly one 1 in each tile is (m!)*(n!)™.

1.1.80. There are 2" permutations m of [n] such that (i +1) < n(i) +1 for
1 <i < n-1. Weview permutations as words. Call such a permutation
good. Listing the possibilities for small n suggests the answer 277!,

Proof 1 (induction on n). There is one good permutation of [1]. For
n > 1, note that the constraint on the value following value n always
holds. Hence if #(1) = n, then we can ignore n, and the remaining con-
straints are precisely those for a permutation of [n — 1]. Hence there are
2"2 good permutations starting with n.

If not at the beginning, then n» must immediately follow element n —
1; following any other would violate a constraint. Deleting n yields a good
permutation of [n—1], since the element now following n—1 (if any) is less
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than n — 1. On the other hand, n can be inserted immediately following
n—1 in any good permutation of [n—1] to form such a good permutation of
[n]. Both of these maps are injective, so the number of good permutations
of [n] in which n is not at the beginning is 2"~2.

Combining the cases yields 277,

Proof 2 (combinatorial argument). We map good permutations into
subsets of [n — 1]. Given a good permutation r, let f(n) = {i: #(Q) > n(i +
1)}. To show that f is a bijection, we show that for each S C [n—1], there
is a unique permutation z of [n] such that f(x) = S.

In a good permutation, the runs of increasing steps are consecu-
tive numbers. Furthermore, the element after the end of a run must
be smaller than the element starting it. Thus the elements of each
run are smaller than the elements of each preceding run. Hence know-
ing the boundaries of the runs determines the permutation. For exam-
ple, if the first run has k£ elements, then the permutation must start
n—k+1,n—k+2,...,n,and the next element will be just small enough
to allow the next run to end at n — k.

Thus the set S of locations of descents determines exactly one good
permutation. This is indeed the permutation 7 such that f(z) = S.

1.1.31. If the set of elements in even-indexed positions of a graceful per-
mutation of [2n] is [n], then the first and last elements differ by n, where
a permutation is graceful if the absolute differences between successive
elements are distinct.

Calll,...,n“small”and n+1,...,2n “large”. For a graceful per-
mutation, the differences between neighboring elements sum to (22"),
which equals 2n2 — n.

When the small numbers occupy the even positions, each absolute dif-
ference is a large number minus a small number. Each number appears
in two differences, except that the first number x and last number y only
appear once. Hence the differences sum to 2X —x —(2Y —y), where X and
Y are the sums of the large numbers and the small numbers, respectively.
Since X — Y = n?, we have 2n%2 — n = 2n? — (x — y); hencex — y = n.

Comment: The converse also holds. Suppose that b; = bg, + n. In
computing T = 212:2 |6; — b;—1| as a sum of positive differences, each b; for
2 <i<2n-1is weighted by §; € {—2, 0, +2}. We extend this to b; and
by, by adding (b1 — bg,) — n = 0. We further observe 21221 6; =0, so

2n 2n
T=0 8b)—n=[) 8bi—n)]-n
=1 i=1
(gi—n)—2Z(s,~—n)—n=2G—28—n=2n2—n= T.
=1 i=1

<2
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11 Chapter 1: Combinatorial Arguments

Thus equality holds throughout. In particular, if b; is small, then
d; = —2. It follows that none of the terms |;,; — b;| has the form [s;,; —s;|.
Hence the terms alternate between small and large. Since by, is small,
the result follows.

1.1.32. Counting necklaces.

a) (n—1)!/2 necklaces with n beads can be made from n distinct beads,
for n > 3. Starting from a given point, there are n! ways to list the beads.
Each necklace correspondsto 2n such listings, since we can start the list
at any bead and go in either direction without changing the necklace.

b) k"—n“k + k crowns with n beads can be made from k types of beads
when n is prime. Starting from a given point, there are k" ways to list
beads forming a circular pattern. A circular pattern arises n times in
this way unless some string repeats with period less than n. For example,
111111000 would yield a circular pattern that arises nine times, while
110110110 would yield a circular pattern that arises only three times.

However, the length of the repeating string must divide n. Since n is
prime, the only divisors are 1 and n. The k circular patterns made using
only one bead arises only once among the k" lists. The other lists all group
into classes of size n; each giving one circular pattern.

1.1.33. If a polynomial p in k variables is 0 at all points in ]_[f:1 S;, where
[Si| = d; + 1 and p has degree d; in variable x;, for 1 < i < k, then pis
identically 0. The base case k£ = 1 is the given hypothesis. Now consider
k > 1. Fixing any choice (x1,...,x;-1) € I'[f;ll S; defines a polynomial in
the one variable x;. By hypothesis, its value is O for x; € S;. By the case
k = 1, its value is 0 everywhere. Now any value of xz, not necessarily
in Si, defines a polynomial ¢q in the variables x4, ..., xz—1 that is 0 when
(x1,...,%3_1) € Hi:ll S;. By the induction hypothesis, this polynomial is
0 everywhere. Hence the original polynomial p is 0 everywhere.

1.1.34. Combinatorial proof of (x + )y = > (})*#) Y-t When z is an
integer, the falling factorial z(,) counts the simple n-words from an alpha-
bet Z of size z. When Z is the disjoint union of an x-set X and a y-set Y,
the words can also be formed by first choosing positions among the n po-
sitions in which to use letters from X. When there are & such positions,
there are x(;) ways to fill them with a simple £-word from X, and each can
be paired with any simple (n — k)-word from Y to form a simple n-word
from Z. Summing over k counts each simple n-word from Z exactly once.
The Polynomial Principle extends to any number of variables, by in-
duction on the number of variables (keep all but one variable fixed). Thus
equality of two polynomials (in two variables) at all positive integer argu-
ments implies equality as polynomials (and at all real arguments).
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1.1.35. Flags on poles.

a) There are r'™ ways to put m distinct flags on r flagpoles in a row.

Proof 1. Place flag 1, then flag 2, etc. Each placement of a flag
effectively splits its location into two locations, since later flags may go
above or below it. With the number of choices iteratively rising, there
arer(r +1)---(r + m — 1) ways to complete the full process.

Proof 2. We obtain a permutation of the flags by listing in order the
flags from the first pole, then the second, and so on. Each permutation
can be associated with any nonnegative integer solutionto x; +---+x, =
m to specify how many flags go on each pole; the resulting arrangements
are all distinct. Hence the answer is m!(™"; 1), simplifying to (™. The
permutation and the distribution amounts for the poles can be chosen in
either order, yielding the same computation.

b) The real number identity (x + y)™ = ¥ & (Z)x(k)y(”_k). When x and y
are nonnegative integers, the left side counts the arrangements of n flags
onto x+y flagpoles. To count the same set in pieces, let £ be the number of
flags placed on the first x flagpoles. We can choose these flags in (Z) ways
and then place these flags on the first x poles in x® ways and the remain-
ing flags on the remaining poles in =% ways. Since each arrangement
has some number of flags on the first x poles, each arrangement is counted
exactly once when we sum over k.

Hence the identity holds for infinitely many choices of both x and y.
By the Polynomial Principle, it holds for all real numbers x and y.

1.1.36. Thereare (n—1)!(2"—1) ways to arrange ndistinct flags on nonempty
flagpoles in a rotating circle.

Proof 1. Writing the flags in order from each flagpole yields a “cir-
cular permutation”, listing [n] in a circle. Since there are n possible
starting points for writing down a circular permutation as a linear per-
mutation, there are (n — 1)! circular permutations.

Any position in the circular permutation can be the last flag on a
pole; we obtain the arrangements on poles by choosing any subset of the
n flags to be the last flags on their poles. Since we choose each position in
the circular permutation at most once, the poles we use are all nonempty.
The number of poles is the number of positions chosen. There is no con-
straint on the number of positions chosen, except that we must choose at
least one, because the flags must be placed.

We have shown that the arrangements correspond to a circular per-
mutation of [n] and a nonempty subset of the n flags; the product rule
now completes the proof.

Proof 2. One can also apply circularity after placing the poles.
There are n! ways to write all the flags in order. There are (f:}) ways to
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13 Chapter 1: Combinatorial Arguments

choose breakpoints to put these onto r poles, including the last position.
Since rotating the circle does not change the arrangement, each circular
arrangement using r poles arises in r ways by this procedure. Summing
over r to count them all and applying the Committee-Chair Identity and
the Binomial Theorem yields

n-1

! n - &
T e

r r=1

1.1.87. When p is prime, ("+§_1) - (Z) is divisible by n, for all n. The quan-

tity ("+§_1) is the number of multisets of size p from n types of elements.

Since (;) is the number of p-subsets of [n], the difference is the number of
multisets in which some element is repeated. Group these multisets into
groups of size n as follows; two multisets A and B are in the same group
if B can be obtained from A by adding a constant to each element and re-
ducing the values modulo n. Because p is prime, iteratively adding 1 to
each element cannot repeat the multiset until »n steps have been taken
(that is, the pattern of multiplicities has no shorter period), so all the
groups have size n.

The reason for subtracting (;‘) is that this quantity is not divisible by
n when p divides n. When p distinct elements are equally spaced modulo
n, the grouping described above yields one group with only n/p sets. In

that case ("*ﬁ_l) differs from a multiple of n by n/p.

1.1.38. The probability that a spinner with equally likely outcomes 1, ..., n
sums to n in three spins is %ﬁ;“” There are n? equally likely outcomes
of the experiment. The number of outcomes with sum »n is the number of

compositions of n with three parts. The number of these is (";1).

1.1.39. Both sides of the identity below count the same set of ternary lists.

l"z/z:l ( n+1 )(s) _ (n— k)zn—2k
2s+1)\k k
s=k

Both sides count the ternary (n + 1)-tuples having a 2 in exactly & posi-
tions such that the copies of 2 separate the copies of 1 into £ + 1 portions
of odd length.

On the left, start with n + 1 positions, and chose an odd number (at
least 2k + 1) to be nonzero. Chose & of the positions that are even-indexed
relative to this sublist to receive 2. Between any two such positions, the
number of copies of 1 is odd, and the number at the beginning or end is
also odd.


https://ebookyab.ir/solution-manual-combinatorial-mathematics-douglas-west/

https://ebookyab.ir/solution-manual-combinatorial-mathematics-douglas-west/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

Section 1.1: Classical Models 14

On the right, begin with anz ternary list of length n — k having ex-
actly k copies of 2. There are (";*)2"2* such lists; copies of 2 may be con-
secutive. Now insert one position immediately before each 2 and at the
end. This position receives 1 or 0 as needed so that the number of copies
of 1 in that portion between copies of 2 is odd. This choice is unique, so we
obtain exactly one of the desired lists for each of the (”;k )22k original
lists of length n — k.

1.1.40. Compositions of integers.
a) There are (:) solutions in positive integers to Z?zl x; < k. There are

(,’;}) solutions in positive integers to ), x; = r; summing over r with
0 <r < k and applying the Summation Identity yields the answer (ﬁ )

Directly, the solutions are determined by choosing n spaces to mark
the partial sums, from the & spaces following &£ dots in a row. The value
x; corresponds to the distance from the (i — 1)th chosen space to the ith,
where by convention the Oth chosen space is before the first dot.

Another direct proof puts the desired solutions in bijective correspon-
dence with the solutions to Z;’:ll x; = k+ 1, by adding a positive variable
x,+1 representing the slack in the inequality. These solutions correspond
to the compositionsof k+1 with n+1 parts; the number of them is (£*171).
b) There are 25~! compositions of k. There are (f‘:}) compositions of &
with n parts. Sum over n and apply the Binomial Theorem.

Bijective proof: Group dots to build a composition. From a row of &
indistinguishable dots, the first dot goes into the first part. Each subse-
quent dot can start a new part or enlarge the current part. Thus com-
positions are formed by making binary choices for £ — 1 dots, and each
(k — 1)-tuple of choices arises from exactly one composition of k.

¢) For k > 1, there are equally many compositions of k with an even
number of parts and with an odd number of parts. A composition is deter-
mined by choosing a subset S of the spaces among & dots; the resulting
number of parts is [S|+ 1. When k£ > 1, half the subsets of a set of size
k — 1 have each parity (toggle the presence of the last element).

Comment: There are many natural bijections from A to B, where A
and B are the sets of compositions of £ having an even number and an
odd number of parts, respectively. Essentially, they pair up odd and even
subsets of the spaces between dots. For example, consider the map that
combines the last two parts if the last part is 1 and splits 1 off the last
part to form a new last part if the original last part exceeds 1.

d) For k > 2, the number of compositions of k with an even number of
even parts equals the number of compositions of k with an odd number of
even parts. Let A and B be the sets of compositions of £ with an even num-
ber of even parts and an odd number of even parts, respectively. Define
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15 Chapter 1: Combinatorial Arguments

f: A — Bas follows. For x € A, consider the first part, p. If p = 1, com-
bine p with the second part. If p > 1, split off 1 from p to make a new
first part. The 1 that appears or disappears does not affect the number of
even parts. The other changed part changes by 1, so its parity changes.
Hence the number of even parts changes by 1, which changes its parity.

Note that the first part in f(x) is 1 if and only if the first part in x is
not 1. Continuing through the other parts shows that the first difference
between elements x and y of A causes a difference in f(x) and f(y). Hence
f is injective. By the same argument, the function g: B — A defined in
the same way is also injective. Hence |A| = |B|.

1.1.41. Compositions of integers.

a) Over all compositions of k, the total number of parts is (k + 1)2%-2,
The compositions correspond to the subsets of the £ — 1 spaces in a row
of k£ dots. Each j-element subset yields a composition with j + 1 parts.
The first dot starts a part in each composition. Each remaining dot starts
a part in half of the compositions. Since the number of compositions is
2F-1 the total number of parts is 2¥~1 +(k—1)2*-2. (The same answer can
be obtained by computing Zf;(l) G+1)( fj) using techniques or identities
from Section 1.2.)

Proof 1 (summation). Since there are (';:i) compositions with j

parts, the total equals Zle J (fj

Identity over the committee size, we obtain Zle J (f:}) = Zf;i (f:i) +
TG -1(AD) = 28 + (k- 1)252 = (k + 1)252.

Proof 2 (bijection). Alternatively, compositions correspond to sub-
sets of the spaces among % dots.

b) Over all the compositions of k, there are (k — m + 3)2¥™~2 parts
equal to m, where 1 < m < k. Elements of the set A ,, being counted are
expressible as the pairs (C, j), where C is a composition of £ and j is a
marked copy of m in C. Subtracting 1 from the marked copy of m yields a
pair (C’, j’) in Ag_1 m-1. The map is injective and surjective, so the sets
have the same size, as desired. This leaves the problem of counting A ;.

Proof 1 (direct argument using part (a)). Skipping any 1 in a com-
position of £ leaves a composition of £ — 1, and each composition of £ — 1
with j parts arises in j + 1 ways by doing this. That is, each composition
of £ — 1 with j parts yields j + 1 parts of size 1 among compositions of k.
The answer is thus 1 for each composition of £ — 1 plus the answer of part
(a) for k — 1: 252 + k2%-3 = (k + 2)2%~3. The result is the special case of
the claimed formula for m = 1.

Proof 2 (induction on k). Let a; = |Aj—1|. Note that a3 = 2 =
(2—1+3)2271-2 = 2, For k > 2, group the compositions by the last part.

). By summing the Committee-Chair
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With last part 1, the total number of 1s is a;_1 +2%2, since there are 22
compositions of £ — 1. With last part j, where 2 < j < k — 2, the total is
ai—;, and there is 1 with last part £ — 1. Thus ¢z = 1+ 2¥2 + ij ;.
We can apply the induction hypothesis and then perform the sum. To
avoid performing the sum, subtract consecutive instances to obtain for
k > 3 that ax —az_; = 282 — 253 + ¢;_;. Now the induction hypothesis
yields ax = 2(k + 1)25* + 253 = (k + 2)2%-3,

Proof 3 (induction variation). For & > 2, reduce the last part by 1
to obtain a composition of £ — 1. Each such composition arises twice, by
deleting a final 1 or by reducing a final part larger than 1. Counting 1s
over all resulting compositions thus yields 2a;-1, but we lost one for each
of the 22 compositions of k ending in 1, and we gained one for each of
the 2%-3 compositions of k£ ending in 2. Hence a; = 2a;_; + 252 — 253 =
(k + 2)2F-3,

Proof 4 (overall induction, sketch). One can also do the whole prob-
lem by induction on £ for fixed m. The inductive idea is like that in Proof
2 or Proof 3, with adjustments for the copies of m that arise or disappear.
The computations are not as clean as above, so we omit them.

O 1+ Y51 (k—m+ 3202 = (k + 1)28"2. By parts (a) and (b),
both sides count all parts in all compositions of k (the extra 1 counts the

composition whose only part is k).

1.1.42. The Weights Problem. The set Sy = {1,3,..., 3% 1} permits the
checking of all integer weights from 1 through (3* — 1)/2 on a balance scale,
and no other choice of k known weights permits more values to be checked.

Let f(k) = (3* — 1)/2. We first prove that S; permits us to balance
object A, of integer weight n for 1 < n < f(k). It suffices to express n as
Zf:ol b;3, where each b; € {-1,0, 1}, because then interpreting —1,0, 1
for b; to mean “same side as A,”, “off the balance”, and “side opposite to
A,” yields an explicit configuration of the weights that balances A,.

We find the desired numbers {b;} using the ternary expansion of the
number n’ = n + f(k). The equation n = Zf:ol b;3" holds if and only if
the equation n’ = Zf;ol (b; + 1)3¢ holds, because the geometric sum yields
(8k—1)/2 = Zf:_ol 3. Since n < f(k), we haven’ < 2f(k) = 8 —1. Ternary
expansion guarantees a (unique) expression of n’ as n’ = Z;:ol a;3" with
each a; € {0, 1, 2}. Setting b; = a; — 1 yields an explicit way to weigh n.

We also must prove that no other set of weights can balance more val-
ues. We count the possible configurations: each weight can be placed on
the left, on the right, or omitted, generating 3* possible configurations.
The configuration that omits all weights balances no nonzero weight. Of
the remaining 3* — 1 configurations, each balances the same weight as the
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17 Chapter 1: Combinatorial Arguments

configuration obtained by switching the left pan and right pan. Hence at
most (3% — 1)/2 distinct values can be weighed.

The construction for the lower bound can also be established using
induction on k. The advantage of the bijective proof is that it gives an
explicit description of the configuration used to balance a given weight.

1.1.43. Using weights wy < --- < w, on a two-pan balance, where S; =
Z{=1 w;, every integer weight from 1 to S, can be weighed if and only if w, =
1 and wjz1 < 28; +1 for 1 < j < n. For sufficiency, we use induction
on n. When n = 1, the condition forces w; = 1, and the weight 1 can
be balanced. For the induction step, consider » > 1, and suppose that
the condition is sufficient for n — 1 weights. For 1 < i < S — w,, the
induction hypothesis implies that we can weigh i using {w;, ..., w,_1}.
With w, also available, we can also weigh w, —i and w, + i, so we can
weigh every weight from w, — S, to w, +S,—1 = S, using {w1, ..., wn}.
Since w, — S,-1 < S,-1 + 1 by hypothesis, we can weigh every weight up
to S,.

For necessity, suppose we can balance all weights from 1 to S,. The
second largest possibility is S, — w1, required to be S, — 1, so w; = 1.
If wiy1 > 2S; + 1 for some j, then let W = S, — 25; — 1; we claim that
W cannot be weighed. The largest weight achievable without putting all
of {wj+1,...,wy} in one pan is S, — wj+1 < W, but the smallest weight
achievable using all of {wj41, ..., w,} in one pan is S, — 2S;, which ex-
ceeds W.

1.1.44. Regions in cevian arrangements. From the three points x, y, z on
acircle, chords emerge and reach the circle between the other two points.
When counting regions, we can view this as chords from a vertex of a tri-
angle to the opposite side (these are called cevians in geometry).

From each cevian arrangement with i, j, £ chords emerging from
x,y, 2z, respectively, we can reach every other such arrangement by it-
eratively sliding the foot of one chord. When a chord reaches the inter-
section of two other chords, we temporarily lose a region, but the count
is restored when the chord emerges from the intersection. Thus every
configuration without triple intersection points achieves the maximum
number of regions.

Proof 1. The regions become easy to count when the chords from
each vertex reach the circle near the next vertex, cyclically. The chords
from x and y then form a small grid of ij regions near y. Near the xy
edge, the chords from x form i regions. Repeating this cyclically counts
all the regions except one central region, and the total isij + jk + ki +i +
Jj+Ek+1.
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Proof 2. Having observed that the maximum occurs when there are
no triple-points and that each chord intersects every other, one can count
the regions formed as chords are placed. First chords from x each split
1 region when added. Then the chords from y split i + 1 regions each.
Finally the chords from z split i + j + 1 regions each. Starting from a
single initial region, the total becomes

1+i(D)+jG+D)+kG+j+1)=ij+ik+jk+i+j+k+1.

Proof 3. Having observed that the maximum occurs when there are
no triple-points and that each chord intersects every other, one can treat
the configuration as a planar graph and apply Euler’s Formula. Here the
computations are a bit more complicated, and we are not assuming Eu-
ler’s Formula.

1.1.45. When n is divisible by r, and a k-set is chosen from [n] uniform
at random, where ged(k, r) = 1, the probability that the sum of the k-set is
divisible by r is 1/r. We prove more generally that the sum is equally dis-
tributed over the congruence classes modulo r. For any k-set, adding 1
to each element (n turns into 1) produces another k-set whose sum mod-
ulo r is larger by k. Since ged(k, r) = 1, the original congruence class is
not revisited until r steps later, after one k-set has been found in each
congruence class. Since n is divisible by r, the translates of a given k-set
contribute equally to the r congruence classes. Since translation parti-
tions the k-sets into disjoint classes, and the claim holds for each class,
the distribution over all the k-sets is also uniform.

1.1.46. Forn,m,k € Nwith k < n, Z;.';O % = 1. Consider a deck
k+j

of n blue cards and m red cards. A player pulls cards at random without
replacement and wins when % blue cards are obtained. The probability
of winning is 1, since £ < n. We compute the probability that the player
wins after drawing exactly j red cards, where 0 < j < m. The probabil-
ity that exactly & of the first £ + j cards are blue is (Z)('J")/ (',‘;’1") The
probability that the last card is blue given that exactly & of the first £+ j
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cards are blue is k/(k+j). Hence the probability of winning after drawing

exactly j red cards is —;(ki(;))((';f)"‘)' Summing over j completes the proof.

+J
1.1.47. If f: A — Band g: B — A are injections, then there exists a bijec-
tion h: A — B, and hence A and B have the same cardinality. (Schroeder-
Bernstein Theorem)

We view A and B as disjoint sets, making two copies of common ele-
ments. For each element z of AU B, we define the successor of z to be f(z)
if z € A, and g(z) if z € B. The descendants of z are the elements that can
be reached by repeating the successor operation. We say that z is a prede-
cessor of w if w is the successor of 2. Because f and g are injective, every
element of A U B has at most one predecessor. The ancestors of z are the
elements that can be reached by repeating the predecessor operation.

The family of z consists of z together with all its ancestors and de-
scendants; call this F'(z). We use the structure of families to define a one-
to-one correspondence between A and B. The successor operation defines
a function f’ on A U B; below we show several possibilities for families
using a graphical description of f’.

First suppose that z is a descendant of z. Because every element has
at most one predecessor, in this case F(z) is finite (repeatedly composing
the successor function leads to a “cycle” of elements involving z). Apply-
ing f’ alternates between A and B, and thus F(z) has even size. For every
x € A in F(2), we pair x with f(x); because F(2) has even size, this is a
one-to-one correspondence between F(z) N A and F(z) N B.

Otherwise, F(2) is infinite. In this case, the set S(z) of ancestors of
z may be finite or infinite. When S(2) is finite, it contains an origin that
has no predecessor (all elements of F(z) have the same origin). If S(z) has
an origin in B, then for every x € A N F(z) we pair x with its predecessor
g7 1(x); because B contains the origin, g~!(x) exists. When S(2) is infinite
or has an origin in A, we pair x with its successor f(x).
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Because every element has at most one predecessor, the pairing we
have defined is a one-to-one correspondence between the elements of A and
the elements of B within F(z). Since the families are pairwise disjoint,
it is also a one-to-one correspondence between A and B. In more techni-
cal language, we have defined the function A: A — B by h(x) = g 1(x)
when the family of x has an origin in B, and h(x) = f(x) otherwise. The
function A is the desired bijection.

1.2. IDENTITIES

1.2.1. Combinatorial proofs of (,},) = 12(}) and (ﬁig)(”‘;k) = (™™ (})
To choose k + 1 elements from [n], one can first choose £ and then choose
one element from the remaining n—k&. This marks one element as special,
which could be any of the £ + 1 chosen elements, so each (k + 1)-set has
been counted £ + 1 times.

For the second equality, both sides are 0 unless 0 < k£ < n. Both sides
count the ternary lists of length m + n in which m positions are 0 and % of
the remaining n positions are 1. On the right side, choose the positions
for Os and then the positions for 1s. On the left side, first choose all the
positions for Os and 1s, and then among them choose the positions for 1s.

1.2.2. Y5, (™*) = (™*m1). After applying complementation to convert

m+1
m+k

the summand to ( o ), the Summation Identity evaluates the sum.

1.2.3. (3) - (%2) = (321) + (}22). Using Pascal’s Formula twice,

ny_(n-1 + n—1\ (n-1 " n—2 " n—2

k) \k-1 E ) \k-1 k-1 k)
1.2.4. Pascal’s Formula holds for the extended binomial coefficient. We
take the coefficient (Z) to be 0 when k£ < 0, so the formula holds when

k=1 Fork>1,weuse (}) =4 ]'[::01 v—i)= k(" ) with v equal to
u— 1 and then u to compute

() (o) = (o)« (o) =26 2) = ()

1.25. Y (i) (k) = (24). Setting I = n — k, the sum becomes

m+n
2 (m - _l)(j), and the value is given immediately by the Vandermonde

convolution.
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k—1\ _ k— —
126, T (") = S (4 and 4 (1)) = (37). For the first
equality, applying complementation to convert the summands to (™}*;")
and ("**.1) allows the Summation Identity to evaluate the two sides to

(™) and (™), which are equal.

Applying complementation to the second factor in the summand con-
verts thesum to ), (7)( ), which evaluates by the Vandermonde con-

volution to (7™ mm.

m
m—r—k

), which equals (
1.2.7. Evaluation of (). Using the definition,

_ k-1 1\ k1
( kl) = % [[-1-9= % [Je+v =0k
i=0 i=0

1.2.8. Summing the first n positive numbers. Inthe formulasi? = 2(;)+(;)
and i® = 6(3)+6(;)+(}), the left side counts k-tuples from an i-set, where
k € {2,3}. On the right for £ = 2, we can choose two distinct elements
in (;) ways and list them in either order, while if we use the same ele-
ment twice there are i choices. For £ = 3, there are six orders in which
we can list three distinct elements. When using only two elements, we
choose them, pick which of the two to use only once, and pick its location,
yielding 6(;) Again there are i ways to use only one element.
We use the Summation Identity to perform the sums.

Zi: Z(;) _ (n;—l) _ n(n2+1)'
S §)o()- 1))
'nl i = ; 6(;)+6(;)+ (;) =6(”11)+6(”;1)+ ("‘2”)

=n(n+1)((n_1)4ﬂ+(n—1)+%)=n(n+1)n2+n

As an application,

n 2 2
3 2 g _ I (n+1) n(n+1)2n+1) B n(n+1)
iil (2i° + 8i* — 5i) = 5 + 2 5 3

=n(n + 1)(n(n2+ 1) + 2n2+ 1_ g) = %n(n+1)(n—1)(n+4).
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1.2.9. There are d,,,, ways to put m white and n black marbles into boxes
if each box has at most one marble of each color and no box is empty until
all marbles are used. The boxes in order correspond to steps in a Delannoy
path. The steps can be horizontal (white marble) or vertical (black mar-
ble) or diagonal (one marble of each color). When all marbles are used,
the path will reach (m, n).

1.2.10. A triple product identity. We use the Committee-Chair Identity
twice, reorder the factors, and use it two more times.

n-1 n \(n+1l\_ (n-1\ n (n—-1\n+1( n
(k - 1)(k+ 1)( k ) - (k— 1)m( k )T(k— 1)
_(n-1)\[n+1n(n-1 n \_(n-1\(n+1 n\
‘( k )[mz(k—l)](k—l) ‘( k )(k+1)(k—1)
1.2.11. Identities by induction, using Pascal’ Formula.
a) The binomial coefficient formula (Z) = #lk), The formula holds for
n = 0 under the convention that the “factorial” of a negative number is

infinite. For n > 1, Pascal’s Formula and the induction hypothesis yield

_ ne1 2y (e (-1  _ nk _ nl E nl_ _ _n
(2) =)+ (o) = momr + Theem = 5 Hoeml T n ek = A

1.2.12. When flipping 100 fair coins, the number of heads and tails are
more likely to differ by 2 than be equal.

Proof 1 (computation with factorials). The probability of equal num-
bers is (57 )/21%. The probability of differing by 2 is 2(’g’)/2'®, since ei-
ther heads or tails may be extra. For the ratio, we cancel like factors and

50150! _ 50
compute 3 4o5577 = 5.49 < 1.

Proof 2 (combinatorial argument). Given any string with 50 heads
and 50 tails, switching the last flip yields a string in which the numbers
differ by 2. Distinct strings get mapped to distinct strings, so the map is
injective. Furthermore, strings in which the last entry is in the minority
do not arise, since flipping it from equal weight makes its new value occur
51 times. Hence there are strictly more differing by 2.

b) The Summation Identity ¥, (:) = (}1) for n,k > 0. For n = 0,
the identity reduces to ({) = (,,); both sides equal 1 if k¥ = 0 and 0 if
k > 0. For n > 1, the induction hypothesis and Pascal’s Formula yield
Yo (1) = () + 25 (1) = () + (3) = (1)

¢) The Binomial Theorem (x + y)* = Y;_, (})x*¥y"*. For n = 0, we
have (x + y)° = 1 = (3)x%°. For n > 0, the induction hypothesis gives
(x+yr =Y, (":H)aFym1*. We multiply both sides by (x + y) and
simplify the resulting expansion. To combine terms where the exponents
agree on x and agree on y, we shift the index in the first summation. We
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then use Pascal’s Formula to combine corresponding terms. For the extra
terms, (?_1) = 1 = (?) and (*;") = 1 = (}); these become the top and
bottom terms of the desired summation. The full computation is

n—1
n _ n—1 k.,n—1—k
(c+) —<x+y);( o)
n—1
(n; 1)xk+1yn—1—k + Z (n; 1)xkyn—k
k=0
n=1\ ; . o (n-1 k. n—k
(l_l)xy #3770 )t
=1 k=0
n &« n—1 n—1 k. n—k n - n\ k. n—k
=x+zk_1+ P 1E +y=kay
k=1 k=0

d) An alternating sum: Ef=0(—1)i (,*,) = (') Weprovethisforn, k>
0. For n = 0, the conventions for binomial coefficients yield 0 on both sides
unless £ = 0 (where they equal 1). For n > 0, the induction hypothesis

and Pascal’s Formula yield

Sev(n )= Sen () ()]

i=0 i=0

k n—1 k n—-1
—_ 13 13
- Z(_l) (k - i) * Z(_l) (k— 1 —i)
i=0 i=0
n—2 n—2 n—1
= + = .
(%) (=) =)
1.2.13. Combinatorial transformations for summing min{i, j} and max{i, j}.

a) Z:":l Z";:l mln{l’ J} = Z;cl:l kz'

Proof 1. Consider an arrangement of unit cubes piled atop the
square with opposite corners (0, 0) and (n, n) in the plane. The pile of
cubes in position (i, j) (that is, with upper right corner (i, j)) has height
min{i, j}. Thus the sum on the left counts the cubes. The number of po-
sitions where the pile has height at least (n — £+ 1) is the number of pairs
(i, j) such that both i and j belong to the set {n —k+ 1,...,n}. There
are k2 such pairs, so grouping the cubes by the height of their position
yields the sum Y ;_, k2. (Without geometry, this argument is the same
as summing the entries of a matrix with min{i, j} in position (i, j).)

Proof 2. Both sums count the squares with positive integer side-
lengths formed by the linesy =0,...,y =nandx =0,...,x =n. There

—-

n—

1l
ol
- 1M
(=}
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are k2 such squares with side-length n + 1 — k, so the sum on the right
counts them by size. The sum on the left groups them by the upper right
corner. The number of squares in the set whose upper right corner is the
point (i, j) is precisely min{i, j}, and we sum over all choices for i and ;.

Proof 3. Both sums count the 3-tuples of integers from [n] in which
the third element is smallest. When the first two elementsare (i, j), there
are min{i, j} choices for the third element. When the third element is r,
there are n — r + 1 choices for each of the first two elements. Letting
k =n—r+1 againyields the sum };_, k2.

b) Yro, k2 =2("3")+("5"). Bothsides count 3-tuples (, s, ) € [n+1]3
such that ¢ > max{r, s}. The sum on the left counts the triples according
to the value of ¢; when ¢t = k+ 1, there are k% ways to specify r and s. The
terms on the right group the triples according to whether r = s. If so,
then we pick two elements and put the larger in ¢. If not, then we pick
three, put the largest in ¢, and choose either order for r and s.

o Y, Y-y min{i, j} = Fn(n+1)2n+1)and ¥, Y-y max{i, j} =
#n(n + 1)(4n — 1). For the first sum, we invoke parts (a) and (b) and then
compute 2("3')+("3!) = {(n+Dn(n—1)+ L(n+1)n = L(n+1)n[2n—2+3].
For the second, since min{i, j} + max{i, j} = i + j, we subtract the first
sum from Y, Z;=1(i +J), which equals n 37 i+ n}_, j, or 2n("3).
The final value is (n+ 1)n[n— §(2n+1)], which yields the desired formula.

Comment: These identities can also be obtained by algebraic manip-
ulation of known identities involving things like sums of squares.

1.2.14. Y7 (m—j)2i =2 —m -1

Proof 1 (induction). Let f(m) denote the given sum. Note that
f(m)— f(m—-1)= Z;"z_ll 2/-1 =2m=1 1, Also f(0) =0, since the sum is
empty. Therefore,

i} fm) =YL (FO- G- =YL, @ -1)=2"-1-m.

Proof 2 (counting two ways). The family of all subsets of [m] with
size at least two has size 2™ — 1 — m. The given sum counts this by the
position of the next-to-last 1 in the incidence vector. When the next-to-
last 1 is in position j, there are m — j choices for the rightmost 1 and
2/-1 ways to fill the first j — 1 positions. The sum counts precisely the
incidence vectors with at least two 1s, because those are the vectors that
have a next-to-last 1.

1.2.15. Combinatorial arguments for identities.
a) () = 2(>*'). Topick a set of size n from [2n], one can use element
n and choose n — 1 from the remaining 2n — 1 elements to add, or omit

element n and choose n — 1 from the remaining 2n — 1 elements to omit.
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b >, ('l‘)(;;) = (’;)2”‘1. The kth term in the sum counts the ways to
form a committee of size k£ with a subcommittee of size [ from a set of n
people, choosing the committee first and then the subcommittee. When
we sum over k, we are considering all possible sizes for the committee, so
the sum counts all possible committees with a subcommittee of size /.

Selecting the subcommittee first can be done in (7}) ways, and then
the rest of the committee can be filled by choosing an arbitrary subset of
the people that remain. Thus the right side also counts this set.

The proof can equivalently be phrased by saying that both sides count
the ternary n-tuples with [ zeros.

oY .q¢t= 3;__—11 for g, n € N. Consider a tournament with ¢" play-
ers in which games involve g players and exactly one survives. In the first
round, there are ¢"~! games. In the jth round, ¢"~/*! players remain and
there are ¢/ games. In the nth round, there is one game, and the win-
ning survives. Setting k£ = n+1—j shows that the left side of the identity
is the total number of games. On the other hand, ¢" — 1 players must be
eliminated, and each game eliminates g — 1 players, so the right side also
counts the games.

d Y, i(n—i) =Y, (}) Bothsides count the 3-element subsets of
[n+1]. The left side groups them according to the middle element; there
are i(n — i) triples in which the middle element is i + 1. The right side
groups them according to the top element; there are (;) triples in which
the top element is i + 1.

1.2.16. Strehl’s Identity: Y, (2)2(2:) =3 (2)3

Proof 1 (Vandermonde convolution). Special cases of the Vander-
monde convolution include ¥, (;)(§) = ("**) and ¥, (})(,”,) = (¥). With
these (at the beginning and end), the Subcommittee Identity, and revers-
ing the sum on k&, we compute

()= 2000 2 00266

TZOUE- 36T 5660
202 2079079)-260 200

-3 () ()

Proof 2 (counting two ways). Given n distinct red cards and n dis-
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