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Instruction Manual

In this manual we provide three items:

• Answers to Selected Exercises
Of course, these answers are not provided in the text. We frequently give detailed solutions so that
you can make them for student use if you wish.

• Sample Examination Questions
We list possible examination questions.

• Sample Course Outline
We provide an outline for a one semester course consisting of 42 class days. In the outline we suggest
routine homework assignments. The outline and accompanying assignments are representative of
strategies that have worked in a variety of institutions. We also have research projects listed on
the Jones and Bartlett website.
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Answers to Selected Exercises

Chapter 1

Section 1.1. The Origin of Complex Numbers: page 11

2. As the text indicates, when complex numbers arose as solutions to quadratic equations such as
x2 + 1 = 0 they were easily dismissed as meaningless. Bombelli showed, however, that complex
numbers were indispensable in obtaining real solutions to certain cubic equations. For example,
the depressed cubic x3− 15x− 4 = 0 clearly has x = 4 as a solution, but Bombelli’s technique gets
this number only by the calculation (2 + i) + (2− i) = 4. Thus, the utility of complex numbers in
producing real solutions to some cubic equations could not be ignored.

4a. Following the hint let b = 0 and c = 3. The two points labeled as E and F in Figure 1.3 then
coincide with point A, but the expression ±

√
b2 − c2 has E and F representing, respectively, ±

√
9.

4c. A faithful representation of any number system would be defective if two different numbers were
represented by the same point (part a) or if two different points represented the same number (part
b).

6a. Substituting z = x− a2
2 = x+2 into z3−6z2−3z+18 = 0 reduces the equation to x3−15x−4 = 0.

Solving via Equation (1-3) gives x = 4. Factoring then reveals x3− 15x− 4 = (x− 4)(x2 + 4x+ 1).
Solving x2 + 4x + 1 = 0 with the quadratic formula produces x = −2 ±

√
3. Thus, the three

solutions are z = 6,
√

3, and −
√

3.

8. Multiplying i with the standard unit vector would yield an angular displacement of zero radians,
which would mean that (i)(1) = 1. The product (−1)(−1) would have an angular displacement
of π2 radians, so would equal cos(π2) + i sin (π2) ≈ −0.9 − 0.43i. Finally, under this scheme we
would have (−1)(1) = 1 = (1)(1), but clearly −1 6= 1.

Section 1.2. The Algebra of Complex Numbers: page 19

2a. (1 + i)2 + 1)(3 + i) = (1− 3i)(3 + i) = 6− 8i.

2c. Re
[
(i− 1)

3
]

= Re (2 + 2i) = 2.

2e. 1+2i
3−4i − 4−3i

2−i = 3+28i
11−5i = −107+323i

146 = − 107
146 + 323

146 i.

2g. Re
[
(x− iy)

2
]

= Re
(
x2 − 2xyi− y2

)
= x2 − y2.

2i. Re [(x+ iy) (x− iy)] = Re
(
x2 + y2

)
= x2 + y2.

4. Identity (1-10): Let z = x+ iy. Then z = x− iy, so z = x− (−iy) = x+ iy = z. Similarly for the
other identities.

6a. Re (z1 + z2) = Re [(x1 + iy1) + (x2 + iy2)] = Re [(x1 + x2) + i (y1 + y2)] = x1 + x2 = Re (z1) +
Re (z2) .

6b. Of course, the identity is not true in general, and students need only produce one counter-
example, such as Re [(2 + i) (3 + i)] = Re (5 + 5i) = 5, but Re (2 + i) Re (3 + i) = (2) (3) = 6.
You might return to this question after polar form is discussed to show that the identity is
true iff at least one of the numbers is real. Here’s a proof: Re (z1z2) = Re

(
r1r2e

i(θ1+θ2)
)

=
r1r2 cos (θ1 + θ2) . Re (z1) Re (z1) = r1r2 cos θ1 cos θ2. The two expressions are equal provided
cos (θ1 + θ2) = cos θ1 cos θ2. As cos (θ1 + θ2) = cos θ1 cos θ2−sin θ1 sin θ2, equality occurs iff sin θ1 =
0, or sin θ2 = 0, i.e., iff at least one of the numbers is real.
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8. For n = 1 we get (z + w)1 = w + z =
1∑
k=0

(
1
k

)
zkw1−k. Assume, for some n ≥ 1, that (z + w)n =

n∑
k=0

(
n
k

)
zkwn−k. Using the standard combinatorial identity

(
n+1
k+1

)
=
(
n
k

)
+
(
n
k+1

)
, we deduce

(z + w)n+1 = (z + w)n(z + w) =

[
n∑
k=0

(
n

k

)
zkwn−k

]
(z + w)

=

n∑
k=0

(
n

k

)
zk+1wn−k +

n∑
k=0

(
n

k

)
zkwn−k+1

=

n∑
k=0

(
n

k

)
zk+1wn−k +

n−1∑
k=−1

(
n

k + 1

)
zk+1wn−k

=

n−1∑
k=0

(
n

k

)
zk+1wn−k + zn+1 + wn+1 +

n−1∑
k=0

(
n

k

)
zk+1wn−k

=

n−1∑
k=0

[(
n

k

)
+

(
n

k + 1

)]
zk+1wn−k + zn+1 + wn+1

=

n−1∑
k=0

(
n+ 1

k + 1

)
zk+1wn−k + zn+1 + wn+1

=

n∑
k=1

(
n+ 1

k

)
zkwn+1−k + zn+1 + wn+1

=

n+1∑
k=0

(
n+ 1

k

)
zkwn+1−k.

10. If (0, 0) were to have a multiplicative inverse, say (x, y), then we would have (0, 0)(x, y) = (1, 0).
But according Definition 1.3, (0, 0)(x, y) = ((0)(x) − (0)(y), (0)(y) + (x)(0)) = (0, 0) no matter
what (x, y) is.

12. Following the hint, and using Definition 1.4, we get

z−1 = (1,0)
(x,y) =

(
(1)(x)+(0)(y)

x2+y2 , −(1)(y)+(x)(0)
x2+y2

)
=
(

x
x2+y2 ,

−y
x2+y2

)
.

Thus, by Definition 1.3 we have

zz−1 = (x, y)

(
x

x2 + y2
,
−y

x2 + y2

)
=

(
x

(
x

x2 + y2

)
− y

( −y
x2 + y2

)
, x

( −y
x2 + y2

)
+

(
x

x2 + y2

)
y

)
=

(
x2 + y2

x2 + y2
,
−xy + xy

x2 + y2

)
= (1, 0) .

14. Mimicking the argument for multiplication on page 16, we get

x1

x2
= (x1,0)

(x2,0) =
(

(x1)(x2)+(0)(0)
x2
2+02 , (−x1)(0)+(x2)(0)

x2
2+02

)
=
(
x1

x2
, 0
)

.

Section 1.3. The Geometry of Complex Numbers: page 25

4b. |z|2 = |x+ iy|2 =
(√

x2 + y2
)2

= x2 + y2 = (x+ iy) (x− iy) = zz.

6a. This is the circle of radius 2 centered at (−1 + 2i) .

https://ebookyab.ir/solution-manual-complex-analysis-mathews/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solution-manual-complex-analysis-mathews/


Mathews–Howell Complex Analysis Solutions Manual, 6th Edition Page 4

6c. This is the closed disk of radius 1 centered at −2i.

8. Let z1 = (x1, y1) and z2 = (x2, y2) . The midpoint of the line joining these two points is(
x1+x2

2 , y1+y2
2

)
, which is the point z1+z2

2 .

10. Let z = x+ iy. Then |z| = 0 iff
√
x2 + y2 = 0 iff x = 0, and y = 0 iff z = 0.

12. Let z = x + iy = (x, y) . Clearly iz = (−y, x) , −z = (−x,−y), and −iz = (y,−x) . The distance

between each pair of points, taken in order, is in each case

√
(x+ y)

2
+ (x− y)

2
. To show the lines

connecting these points are perpendicular simply observe that the slopes of the lines connecting
each pair of points, again taken in order, are negative reciprocals of each other. For example, the
slope between z and iz is y−x

x+y , whereas the slope between iz and −z is x+y
−y+x . You may wish to

return to this exercise after Section 1.4, where it is learned that multiplication by i rotates a point
by one right angle. Then a simple argument shows |z| = |iz| = |−z| = |−iz|, and so the equality
of the sides follows because the sides of the square each are the hypotenuse of the right triangle
having the vectors corresponding to the given points as their side.

14. The non-zero vectors z1 = (x1, y1) and z2 = (x2, y2) are parallel iff there is a non-zero real number
a such that z1 = az2 iff x1 = ax2 and y1 = ay2 iff x1y2 = (ax2) y2 and x2y1 = x2 (ay2) = (ax2) y2

iff x1y2 = x2y1 iff x2y1 − x1y2 = 0. But x2y1 − x1y2 = Im (z1z2) .

16. If n = 0, the expression is clearly true for all z 6= 0 (00, of course, is undefined). For positive
integers, an easy induction argument works. When n = 1 the expression is clearly true. Assume,
for some k ≥ 1, that

∣∣zk∣∣ = |z|k . Then, (using Equation 1-25),
∣∣zk+1

∣∣ =
∣∣zkz∣∣ =

∣∣zk∣∣ |z| = |z|k+1
.

For negative integers, use the result for positive integers to derive |z−n| = 1
|zn| = 1

|z|n = |z|−n .

20. Let z1 = x1 + iy1, and z2 = x2 + iy2. Then z1z2 + z1z2 =
(x1 + iy1) (x2 − iy2) + (x1 − iy1) (x2 + iy2) =
[x1x2 + y1y2 + i (x2y1 − x1y2)] + [x1x2 + y1y2 + i (−x2y1 + x1y2)] =
2 (x1x2 + y1y2), which is a real number.

22. Using standard techniques, we have |z1 − z2|2 = (z1 − z2) (z1 − z2) = (z1 − z2) (z1 − z2) = z1z1 −
z1z2 − z1z2 + z2z2 =
|z1|2 − z1z2 − z1z2 + |z2|2 = |z1|2 −

(
z1z2 + z1z2

)
+ |z2|2 =

|z1|2 − 2 Re (z1z2) + |z2|2 .

24a. By definition a hyperbola is the locus of points z with the property that the difference of the
distances between (z and z1) and (z and z2) is a constant This definition conforms exactly to the
set theoretic description {z : |z − z1| − |z − z2| = K} , where z1 and z2 are the foci. Note: the
distance between z1 and z2 must be less than K, because if K ≥ |z1 − z2| , then K ≥ |z1 − z2| =
|z1 − z + z − z2| ≥ |z − z1| − |z − z2| = K. Equality is possible only at points along the same line
passing through z1 and z2, and inequality, of course, is impossible.

24b. With foci of ±2 we get {z : |z + 2| − |z − 2| = K} ={
(x, y) :

√
(x+ 2)

2
+ y2 −

√
(x− 2)

2
+ y2 = K

}
. Because 2 + 3i is on the hyperbola, we have

K =
√

16 + 9−
√

9 = 2. Squaring twice and combining terms gives
{

(x, y) : 3x2 − y2 = 3
}

.

24c. Letting z1 = −25, and z2 = 25, we see that K = |7+24i+25|−|7+24i−25| = 40−30 = 10. Then,
with z = (x, y), the equation of the hyperbola is

√
(x+ 25)2 + y2−

√
(x− 25)2 + y2 = 10. Squaring

both sides, simplifying, squaring again, and simplifying again gives −2400 + 96x2 − 4y2 = 0. In

standard form, x2 − y2

24 = 25.

26. The reason is that |z1z2| = |z1||z2| and that |z2| = |z2|.

Section 1.4. The Geometry of Complex Numbers, Continued: page 34
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2a.
(√

3− i
) (

1 + i
√

3
)

= 2e−i
π
6 2ei

π
3 = 4ei

π
6 = 4

(√
3

2 + 1
2 i
)

= 2
√

3 + 2i.

2c. 2i
(√

3 + i
) (

1 + i
√

3
)

= 2ei
π
2 2ei

π
6 2ei

π
3 = 8eiπ = −8.

4. For z1 6= 0 6= z2, let θ ∈ arg z1 + arg z2. Then θ = θ1 + θ2 for some θ1 ∈ arg z1 and some
θ2 ∈ arg z2. Thus, z1 = |z1| eiθ1 , and z2 = |z2| eiθ2 . This gives z1z2 = |z1| |z2| ei(θ1+θ2), so that
θ = θ1 + θ2 ∈ arg z1z2.

6. For z1 6= 0 6= z2, suppose arg z1 = arg z2. Then for any θ ∈ arg z1 (or arg z2) we have z1 = |z1| eiθ,
and z2 = |z2| eiθ = |z2|

|z1| |z1| eiθ = cz1, where c = |z2|
|z1| . Conversely, suppose z2 = cz1. Since c

is a positive real constant, we have |z2| = |cz1| = c |z1| . If θ ∈ arg z1, then z1 = |z1| eiθ, so
z2 = cz1 = c |z1| eiθ = |cz1| eiθ = |z2| eiθ. This gives θ ∈ arg z2, so that arg z1 ⊆ arg z2. A similar
argument shows arg z2 ⊆ arg z1.

8. Theorem 1.3 gives Arg z1 + Arg z2 ∈ arg z1 + arg z2 = arg z1z2. From the given inequalities we
conclude −π < Arg z1 +Arg z2 ≤ π, which means Arg z1 +Arg z2 = Arg z1z2. The points satisfying
the given inequalities are located in the right half plane, including the positive y-axis, but excluding
the origin and the negative y-axis.

10. For z1 6= 0 6= z2, we know by Theorem 1.3 that arg z1
z2

= arg
(
z1

1
z2

)
= arg z1 +arg 1

z2
, so all we need

show is that arg 1
z = − arg z. For z 6= 0, let θ ∈ arg 1

z . Then 1
z =

∣∣ 1
z

∣∣ eiθ, so z = |z| e−iθ = |z| ei(−θ).
This shows θ ∈ − arg z, so that arg 1

z ⊆ − arg z Likewise, if θ ∈ − arg z, then z = |z| ei(−θ), so
that 1

z =
∣∣ 1
z

∣∣ eiθ, giving θ ∈ arg 1
z .

12. For z1 6= 0 6= z2, we know by Theorem 1.3 that arg (z1z2) = arg z1 + arg z2, so all we need show is
that arg z = − arg z. For z 6= 0, let θ ∈ arg z. Then z = |z| eiθ = |z| (cos θ + i sin θ). This implies
z = z = |z| (cos θ − i sin θ) = |z| cos (−θ) + i sin (−θ) = |z| ei(−θ), so that θ ∈ − arg z. The proof
that − arg z ⊆ arg z is similar. Alternatively, we can use exercise 6 and 10: Noting that z2z2 is a

positive constant, we have arg (z1z2) = arg
(
z1
z2
z2z2

)
= arg z1

z2
= arg z1 − arg z2.

14. In the figure, β is an argument of vector z2 − z1, and γ is an argument of vector z3 − z1. Thus,
α = β − γ ∈ arg (z2 − z1)− arg (z3 − z1) = arg z2−z1

z3−z1 .

Section 1.5. The Algebra of Complex Numbers, Revisited: page 41

2.
(√

3 + i
)2

= 2 + 2i
√

3;
(
2 + 2i

√
3
)2

= −8 + i8
√

3.

4. If z = 0, then trivially zn + zn = 0 is real. If z = reiθ 6= 0, then zn = rneinθ, and zn = rne−inθ.
Thus, zn+zn = rn

(
einθ + e−inθ

)
= rn [(cosnθ + i sinnθ) + (cosnθ − i sinnθ)] = 2rn cosnθ, which

is real.

6. Assuming z = reiθ 6= 0, the solution follows at once using Equation (1-45).

8. This is similar to Exercise 13 except that we observe zi (i = 1, . . . , n−1) is a solution to 1+z+z2 +
· · ·+ zn−1 = 0, as the last equation is equivalent to 1+zn

1−z = 0 for z 6= 1. Thus, zi (i = 1, . . . , n− 1)

is a factor of 1 + z + z2 + · · ·+ zn−1. The result now follows from Theorem 1.4.

10a. (cos θ + i sin θ)2 = cos2 θ − sin2 θ + 2i cos θ sin θ = cos 2θ + i sin 2θ.

10b. The case for n = 1 is trivial. Suppose, for some n ≥ 1, that (cos θ + i sin θ)n = cosnθ + i sinnθ.
Then (cos θ + i sin θ)n+1 = (cos θ + i sin θ)n(cos θ + i sin θ) = (cosnθ + i sinnθ)(cos θ + i sin θ) =
cosnθ cos θ − sinnθ sin θ + i(sinnθ cos θ + cosnθ sin θ) = cos(n+ 1)θ + i sin(n+ 1)θ.

Section 1.6. The Topology of Complex Numbers: page 50
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2. We get x = y2−1, which is a parabola oriented sideways with vertex at (−1, 0) and opening to the
right. For −1 ≤ t ≤ 0, gives the portion from (−1, 0) to (0, 1) . For 1 ≤ t ≤ 2, we get the portion
from (3, 2) to (8, 3) .

4. Let z ∈ Dε (z0) . With z = (x, y), and z0 = (x0, y0), z ∈ Dε (z0) translates to√
(x− x0)

2
+ (y − y0)

2
< x0. Squaring and rearranging terms gives 2xx0 > x2 + (y − y0)

2
> 0.

Since x0 > 0, this gives x = Re z > 0.

6. Let z1 and z2 belong to D1 (0), and let z = z1 +t (z2 − z1) be any point on the straight line segment
joining z1 to z2, where 0 ≤ t ≤ 1. Then |z| = |z1 + t (z2 − z1)| = |z1 (1− t) + z2t| ≤ |z1| (1− t) +
|z2| t < (1− t) + t = 1, so that z ∈ D1 (0) . This shows D1 (0) is connected. To show it is open, let
z0 ∈ D1 (0), and let ε = 1−|z0| > 0. Suppose z ∈ Dε (z0) . Then |z|− |z0| ≤ |z − z0| < ε = 1−|z0| .
Thus, |z| < 1, so z ∈ D1 (0) . To show D1 (0) is not a domain, pick z = 1 ∈ D1 (0), and let ε > 0
be given. Then 1 + ε

2 ∈ Dε (1), but 1 + ε
2 lies outside D1 (0).

8a. Let z0 ∈ K = {z : |z| > 1}, and let ε = |z0| − 1 > 0. Suppose z ∈ Dε (z0) . then |z0| − |z| ≤
|z − z0| < ε = |z0| − 1. Thus, |z| > 1, so z ∈ K.

10. See the first part of the argument for exercise 6.

12. Clearly Cε(z0) is contained in the boundary of Dε(z0), as any neighborhood of any point in Cε(z0)
contains points that belong and do not belong to Dε(z0). Also, if z0 /∈ Cε(z0), then either z0 ∈
Dε(z0) or z0 ∈ (CrDε(z0)). In either case, there is a neighborhood about z0 that is contained in
these sets. Showing this rigorously is a good exercise for interested students.

14. First, 0 is an accumulation point of the set S =
{

1
n : n ∈ N

}
because (by the Archimedian property)

for any ε > 0, there exists n > 0 such that 1
n < ε, so 1

n ∈ D∗ε(0). Also, for any z0 6= 0, there exists
ε > 0 such that no point in D∗ε(z0) belongs to S. Again, showing this last statement with rigor is
a good exercise for interested students.

Chapter 2

Section 2.1. Functions and Linear Mappings: page 65

2a. f(−1 + i) = f
(√

2ei
3π
4

)
=
(√

2ei
3π
4

)21

− 5
(√

2ei
3π
4

)7

+ 9
(√

2ei
3π
4

)4

=

1024
√

2ei
63π
4 − 5

(
8
√

2ei
21π
4

)
+ 9

(
4ei

12π
4

)
= 1024

√
2
[√

2
2 (1− i)

]
− 40

√
2
[√

2
2 (−1− i)

]
− 36 =

1024(1− i)− 40(−1− i)− 36 = 1028− 984i.

2b. Using the same procedure as in 2a, we get f(1 + i
√

3) = −2, 097, 544− 392i
√

3.

4a. f
(
reiθ

)
= r5ei5θ + r5e−i5θ = 2r5 cos 5θ.

4b. f
(
reiθ

)
= r5 cos 5θ + r3 cos 3θ + i

(
r5 sin 5θ − r3 sin 3θ

)
.

4c. The expressions are valid for all z 6= 0.

6a. f(1) = 0.

6c. f(1 + i
√

3) = ln 2 + iπ
3 .

8a. Suppose f(z1) = f(z2). Thus g(f(z1)) = g(f(z2)). But by Equations (2-3), g(f(z1)) = z1, and
g(f(z2)) = z2. Thus, z1 = z2, so f is one-to-one.

8b. Let b ∈ B. Then g(b) ∈ A. By Equations (2-3), f(g(b)) = b, so f is an onto map.
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