CHAPTER 1 SOLUTIONS

Problem 1.1

$$
i(t)=\frac{d q(t)}{d t}=\left\{\begin{array}{cc}
0.002 A, \quad t \geq 0 \\
0 A, & t<0
\end{array}=\left\{\begin{array}{cc}
2 m A, & t \geq 0 \\
0 m A, & t<0
\end{array}\right.\right.
$$

Problem 1.2

$$
i(t)=\frac{d q(t)}{d t}=\left\{\begin{array}{c}
-e^{-0.2 t} A, \quad t \geq 0 \\
0 A, \quad t<0
\end{array}\right.
$$

Problem 1.3

$$
i(t)=\frac{d q(t)}{d t}=\left\{\begin{array}{c}
0.024 e^{-0.003 t} A, \quad t \geq 0 \\
0 A, \quad t<0
\end{array}=\left\{\begin{array}{c}
24 e^{-0.003 t} m A, \quad t \geq 0 \\
0 m A, \quad t<0
\end{array}\right.\right.
$$

Problem 1.4

$$
i(t)=\frac{d q(t)}{d t}=\left\{\begin{array}{c}
\left(7 e^{-0.003 t}-0.021 t e^{-0.003 t}\right) A, \quad t \geq 0 \\
0 A, \quad t<0
\end{array}=\left\{\begin{array}{c}
(7-0.021 t) e^{-0.003 t} A, \quad t \geq 0 \\
0 A, \quad t<0
\end{array}\right.\right.
$$

Problem 1.5

$$
i(t)=\frac{d q(t)}{d t}=\left\{\begin{array}{c}
16 \pi \times 10^{-3} \cos (2 \pi \times 1000 t) A, \quad t \geq 0 \\
0 A, \quad t<0
\end{array}=\left\{\begin{array}{c}
50.2655 \cos (2 \pi \times 1000 t) m A, \quad t \geq 0 \\
0 m A, \quad t<0
\end{array}\right.\right.
$$

Problem 1.6

The charge $\mathrm{q}(\mathrm{t})$ entering an element can be written as
$q(t)=\left\{\begin{array}{c}0.5 \times 10^{-3} t, \quad 0 \leq t<2 \\ -10^{-3} t+3 \times 10^{-3}, \quad 2 \leq t<4 \\ \frac{1}{3} \times 10^{-3} t-\frac{7}{3} \times 10^{-3}, \quad 4 \leq t<7 \\ 0, \text { elsewhere }\end{array}\right.$
The current through the element can be written as

$$
i(t)=\frac{d q(t)}{d t}=\left\{\begin{array}{cc}
0.5 \times 10^{-3} A, \quad 0 \leq t<2 \\
-10^{-3} A, & 2 \leq t<4 \\
\frac{1}{3} \times 10^{-3} A, \quad 4 \leq t<7 \\
0 A, & \text { elsewhere }
\end{array}=\left\{\begin{array}{cc}
0.5 m A, & 0 \leq t<2 \\
-1 m A, & 2 \leq t<4 \\
\frac{1}{3} m A, & 4 \leq t<7 \\
0 m A, & \text { elsewhere }
\end{array}\right.\right.
$$

The current $\mathrm{i}(\mathrm{t})$ is shown in Figure S1.6.

Figure S1. 6

Problem 1.7

$$
q(t)=\int_{0}^{5} 5 \times 10^{-3} d t=5 \times 10^{-3} \times 5=25 \times 10^{-3} \mathrm{C}
$$

Problem 1.8

$$
q(t)=\int_{0}^{5} 5 \times 10^{-6} e^{-0.2 t} d t=5 \times 10^{-6} \frac{\left.e^{-0.2 t}\right|_{0} ^{5}}{-0.2}=5 \times 10^{-6} \times \frac{e^{-1}-1}{-0.2}=1.5803 \times 10^{-5} C=15.803 \mu C
$$

Problem 1.9

$$
q(t)=\int_{0}^{5} 3\left(1-e^{-0.5 t}\right) d t=\int_{0}^{5} 3 d t-3 \int_{0}^{5} e^{-0.5 t} d t=\left.3 t\right|_{0} ^{5}-3 \frac{\left.e^{-0.5 t}\right|_{0} ^{5}}{-0.5}=3(5-0)+\frac{3\left(e^{-2.5}-1\right)}{0.5}=9.4925 C
$$

Problem 1.10

From integral table, we have $\int t e^{a t} d t=\frac{e^{a t}(a t-1)}{a^{2}}$. Thus,

$$
q(t)=\int_{0}^{5} 2 t e^{-3 t} d t=2 \frac{\left.e^{-3 t}(-3 t-1)\right|_{0} ^{5}}{9}=\frac{2}{9}\left[e^{-15}(-15-1)-e^{-0}(-0-1)\right] \approx \frac{2}{9}=0.2222 C
$$

Problem 1.11

From integral table, we have $\int \sin (a t) d t=-\frac{1}{a} \cos (a t)$. Thus,

$$
q(t)=\int_{0}^{5} 7 \sin \left(\frac{\pi t}{5}\right) d t=-\left.\frac{7}{\frac{\pi}{5}} \cos \left(\frac{\pi t}{5}\right)\right|_{0} ^{5}=-\frac{35}{\pi}[\cos (\pi)-1]=\frac{70}{\pi}=22.2817 C
$$

Problem 1.12

$\mathrm{P}=\mathrm{VI}=5 \mathrm{~V} \times 2 \mathrm{~A}=10 \mathrm{~W}$, absorbing power

Problem 1.13

$\mathrm{P}=\mathrm{VI}=2 \mathrm{~V} \times(-3 \mathrm{~A})=-6 \mathrm{~W}$, delivering power

Problem 1.14

$\mathrm{P}=\mathrm{VI}=(-5 \mathrm{~V}) \times 4 \mathrm{~mA}=-20 \mathrm{~mW}$, delivering power

Problem 1.15

$\mathrm{P}=\mathrm{VI}=(-12 \mathrm{~V}) \times(-10 \mathrm{~mA})=120 \mathrm{~mW}$, absorbing power

Problem 1.16

$p(t)=v(t) i(t)=(5 \mathrm{~V}) \times(2 \mathrm{~mA})=10 \mathrm{~mW}$

Problem 1.17

$\mathrm{p}(\mathrm{t})=\mathrm{v}(\mathrm{t}) \mathrm{i}(\mathrm{t})=[5 \sin (2 \pi 1000 \mathrm{t}) \mathrm{V}] \times[25 \cos (2 \pi 1000 \mathrm{t}) \mathrm{mA}]$
$=125 \sin (2 \pi 1000 \mathrm{t}) \cos (2 \pi 1000 \mathrm{t}) \mathrm{mW}=62.5 \sin (2 \pi 2000 \mathrm{t}) \mathrm{mW}$

Problem 1.18

$p(t)=v(t) i(t)=420 e^{-0.15 t} u(t) m W$

Problem 1.19

$\mathrm{p}(\mathrm{t})=\mathrm{v}(\mathrm{t}) \mathrm{i}(\mathrm{t})=[3 \cos (2 \pi 100 \mathrm{t}) \mathrm{V}] \times[8 \cos (2 \pi 100 \mathrm{t}) \mathrm{mA}]$
$=24 \cos ^{2}(2 \pi 100 \mathrm{t}) \mathrm{mW}=[12+12 \cos (2 \pi 200 \mathrm{t})] \mathrm{mW}$

Problem 1.20

$$
\begin{aligned}
& p(t)=v(t) i(t)=[2 \sin (2 \pi 100 t) V] \times[6 \sin (2 \pi 100 t) \mathrm{mA}] \\
& =12 \sin ^{2}(2 \pi 100 t) \mathrm{mW}=[6-6 \cos (2 \pi 200 \mathrm{t})] \mathrm{mW}
\end{aligned}
$$

Problem 1.21

The circuit with one current source and one voltage source is shown in Figure S1.21.

Figure S1.21 Circuit with one current source and one voltage source.

Problem 1.22

The circuit with one current source and one voltage source is shown in Figure S1.22.

Figure S1.22 Circuit with one current source and one voltage source.

Problem 1.23

Figure S 1.23

Problem 1.24

$\mathrm{v}(\mathrm{t})=-2+8 \cos \left(2 \pi 10^{6} \mathrm{t}-135^{\circ}\right) \mathrm{V}$

Problem 1.25

The voltage across the VCVS from positive to negative is given by
$0.5 \mathrm{v}_{\mathrm{a}}=0.5 \times 1.2908 \mathrm{~V}=0.6454 \mathrm{~V}$
The current through the VCCS in the direction indicated in Figure P1.25 (\downarrow) is
$0.001 \mathrm{v}_{\mathrm{a}}=0.001(\mathrm{~A} / \mathrm{V}) \times 1.2908 \mathrm{~V}=0.0012908 \mathrm{~A}=1.2908 \mathrm{~mA}$

Problem 1.26

The voltage across the CCVS from positive to negative is given by
$500 \mathrm{i}_{\mathrm{a}}=500 \times 0.8714 \mathrm{~mA}=0.4357 \mathrm{~V}$

The current through the CCCS in the direction indicated in Figure $\mathrm{P} 1.26(\leftarrow)$ is
$0.6 \mathrm{i}_{\mathrm{a}}=0.6(\mathrm{~A} / \mathrm{V}) \times 0.8714 \mathrm{~mA}=0.52284 \mathrm{~mA}$
https://ebookyab.ir/solution-manual-test-bank-for-electric-circuits-kang/ Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

Problem 1.27

Figure S1.27
Problem 1.28

Figure S1.28

Problem 1.29

Figure S1.29
https://ebookyab.ir/solution-manual-test-bank-for-electric-circuits-kang/ Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

Problem 1.30

Figure S1.30

Problem 1.31

Figure S1.31

Problem 1.32

Figure S1.32

CHAPTER 2 SOLUTIONS

Problem 2.1

From Ohm's law, the current I_{1} through R_{1} is given by
$I_{1}=\frac{V}{R_{1}}=\frac{6 \mathrm{~V}}{3 \mathrm{k} \Omega}=\frac{6 \mathrm{~V}}{3000 \Omega}=0.002 \mathrm{~A}=2 \mathrm{~mA}$

Notice that $1 \mathrm{~V} / 1 \mathrm{k} \Omega=1 \mathrm{~mA}$.
From Ohm's law, the current I_{2} through R_{2} is given by
$I_{2}=\frac{V}{R_{2}}=\frac{6 \mathrm{~V}}{6 \mathrm{k} \Omega}=\frac{6 \mathrm{~V}}{6000 \Omega}=0.001 \mathrm{~A}=1 \mathrm{~mA}$

Problem 2.2

From Ohm's law, the current I_{1} through R_{1} is given by

$$
I_{1}=\frac{V_{1}}{R_{1}}=\frac{2.4 \mathrm{~V}}{800 \Omega}=0.003 \mathrm{~A}=3 \mathrm{~mA}
$$

From Ohm's law, the current I_{2} through R_{2} is given by
$I_{2}=\frac{V_{2}}{R_{2}}=\frac{3.6 \mathrm{~V}}{2 \mathrm{k} \Omega}=1.8 \mathrm{~mA}$
From Ohm's law, the current I_{3} through R_{3} is given by
$I_{3}=\frac{V_{2}}{R_{3}}=\frac{3.6 \mathrm{~V}}{3 \mathrm{k} \Omega}=1.2 \mathrm{~mA}$

Problem 2.3

From Ohm's law, the current I_{1} through R_{1} is given by
$I_{1}=\frac{V_{1}}{R_{1}}=\frac{2.4 \mathrm{~V}}{4 k \Omega}=0.6 \mathrm{~mA}=600 \mu \mathrm{~A}$
From Ohm's law, the current I_{2} through R_{2} is given by
$I_{2}=\frac{V_{1}}{R_{2}}=\frac{2.4 \mathrm{~V}}{6 \mathrm{k} \Omega}=0.4 \mathrm{~mA}=400 \mu \mathrm{~A}$

From Ohm's law, the current I_{3} through R_{3} is given by

$$
I_{3}=\frac{V_{2}}{R_{2}}=\frac{1.2 \mathrm{~V}}{1.8 \mathrm{k} \Omega}=\frac{2}{3} m A=0.6667 \mathrm{~mA}=666.5557 \mu \mathrm{~A}
$$

From Ohm's law, the current I_{4} through R_{4} is given by

$$
I_{4}=\frac{V_{2}}{R_{4}}=\frac{1.2 \mathrm{~V}}{6 \mathrm{k} \Omega}=0.2 \mathrm{~mA}=200 \mu \mathrm{~A}
$$

From Ohm's law, the current I_{5} through R_{5} is given by

$$
I_{5}=\frac{V_{2}}{R_{5}}=\frac{1.2 \mathrm{~V}}{9 \mathrm{k} \Omega}=\frac{2}{15} m A=0.1333 \mathrm{~mA}=133.3333 \mu \mathrm{~A}
$$

Problem 2.4

From Ohm's law, the voltage across R_{2} is given by
$\mathrm{V}_{\mathrm{o}}=\mathrm{R}_{2} \mathrm{I}_{2}=6 \mathrm{k} \Omega \times 1.2 \mathrm{~mA}=6000 \times 0.0012=7.2 \mathrm{~V}$
Notice that $1 \mathrm{k} \Omega \times 1 \mathrm{~mA}=1 \mathrm{~V}$.
From Ohm's law, the current I_{1} through R_{1} is given by
$I_{1}=\frac{V_{1}}{R_{1}}=\frac{2.8 \mathrm{~V}}{1.4 \mathrm{k} \Omega}=2 \mathrm{~mA}$
From Ohm's law, the voltage across R_{2} is given by
$\mathrm{V}_{\mathrm{o}}=\mathrm{R}_{2} \mathrm{I}_{2}=6 \mathrm{k} \Omega \times 1.2 \mathrm{~mA}=6000 \times 0.0012=7.2 \mathrm{~V}$
From Ohm's law, the current I_{3} through R_{3} is given by

$$
I_{3}=\frac{V_{o}}{R_{3}}=\frac{7.2 \mathrm{~V}}{9 \mathrm{k} \Omega}=0.8 \mathrm{~mA}=800 \mu \mathrm{~A}
$$

Problem 2.5

From Ohm's law, the voltage across R_{4} is given by
$\mathrm{V}_{\mathrm{o}}=\mathrm{R}_{4} \mathrm{I}_{4}=18 \mathrm{k} \Omega \times 0.2 \mathrm{~mA}=18000 \times 0.0002=3.6 \mathrm{~V}$
From Ohm's law, the current I_{3} through R_{3} is given by

$$
I_{3}=\frac{V_{o}}{R_{3}}=\frac{3.6 \mathrm{~V}}{6 \mathrm{k} \Omega}=0.6 \mathrm{~mA}=600 \mu \mathrm{~A}
$$

Problem 2.6

From Ohm's law, the voltage across R_{4} is given by
$\mathrm{V}_{\mathrm{o}}=\mathrm{R}_{4} \mathrm{I}_{4}=8 \mathrm{k} \Omega \times 0.4 \mathrm{~mA}=8000 \times 0.0004=3.2 \mathrm{~V}$
From Ohm's law, the current I_{2} through R_{2} is given by
$I_{2}=\frac{V_{o}}{R_{2}}=\frac{3.2 \mathrm{~V}}{3 \mathrm{k} \Omega}=\frac{16}{15} \mathrm{~mA}=1.06667 \mathrm{~mA}$
From Ohm's law, the current I_{3} through R_{3} is given by
$I_{3}=\frac{V_{o}}{R_{3}}=\frac{3.2 \mathrm{~V}}{6 k \Omega}=\frac{16}{30} m A=0.53333 \mathrm{~mA}=533.3333 \mu \mathrm{~A}$

Problem 2.7

From Ohm's law, the voltage across R_{3} is given by
$\mathrm{V}_{\mathrm{o}}=\mathrm{R}_{3} \mathrm{I}_{3}=42 \mathrm{k} \Omega \times(1 / 12) \mathrm{mA}=42 / 12 \mathrm{~V}=3.5 \mathrm{~V}$
From Ohm's law, the resistance value R_{2} is given by

$$
R_{2}=\frac{V_{o}}{I_{2}}=\frac{3.5 \mathrm{~V}}{\frac{7}{60} \mathrm{~mA}}=30 \mathrm{k} \Omega
$$

$1 \mathrm{~V} / 1 \mathrm{~mA}=1 \mathrm{k} \Omega$

Problem 2.8

The power on R_{1} is

$$
P_{R_{1}}=I^{2} R_{1}=\left(2 \times 10^{-3}\right)^{2} \times 2000=4 \times 10^{-6} \times 2 \times 10^{3}=8 \times 10^{-3} \mathrm{~W}=8 \mathrm{~mW} \text { (absorbed) }
$$

The power on R_{2} is

$$
P_{R_{2}}=I^{2} R_{1}=\left(2 \times 10^{-3}\right)^{2} \times 3000=4 \times 10^{-6} \times 3 \times 10^{3}=12 \times 10^{-3} \mathrm{~W}=12 \mathrm{~mW} \text { (absorbed) }
$$

The power on V_{s} is

$$
P_{V_{s}}=-I V_{s}=-2 \times 10^{-3} \times 10=-20 \times 10^{-3} \mathrm{~W}=-20 \mathrm{~mW} \text { (released) }
$$

Total power absorbed $=20 \mathrm{~mW}=$ total power released

Problem 2.9

The power on R_{1} is
$P_{R_{1}}=\frac{V_{o}^{2}}{R_{1}}=\frac{4.8^{2}}{8000}=2.88 \times 10^{-3} \mathrm{~W}=2.88 \mathrm{~mW}$ (absorbed)

The power on R_{2} is
$P_{R_{2}}=\frac{V_{o}^{2}}{R_{2}}=\frac{4.8^{2}}{12000}=1.92 \times 10^{-3} \mathrm{~W}=1.92 \mathrm{~mW}$ (absorbed)
The power on V_{s} is

$$
P_{I_{s}}=-I_{s} V_{o}=-1 \times 10^{-3} \times 4.8=-4.8 \times 10^{-3} \mathrm{~W}=-4.8 \mathrm{~mW} \text { (released) }
$$

Problem 2.10

From Ohm's law, current I_{1} is given by

$$
I_{1}=\frac{20 \mathrm{~V}-15 \mathrm{~V}}{R_{1}}=\frac{5 \mathrm{~V}}{0.5 \mathrm{k} \Omega}=10 \mathrm{~mA}
$$

From Ohm's law, current I_{2} is given by

$$
I_{2}=\frac{20 \mathrm{~V}-10 \mathrm{~V}}{R_{2}}=\frac{10 \mathrm{~V}}{2 \mathrm{k} \Omega}=5 \mathrm{~mA}
$$

From Ohm's law, current I_{3} is given by
$I_{3}=\frac{10 \mathrm{~V}-0 \mathrm{~V}}{R_{3}}=\frac{10 \mathrm{~V}}{1 \mathrm{k} \Omega}=10 \mathrm{~mA}$
From Ohm's law, current I_{4} is given by

$$
I_{4}=\frac{10 \mathrm{~V}-15 \mathrm{~V}}{R_{4}}=\frac{-5 \mathrm{~V}}{1 \mathrm{k} \Omega}=-5 \mathrm{~mA}
$$

Problem 2.11

From Ohm's law, current i is given by
$i=\frac{10 \mathrm{~V}-8 \mathrm{~V}}{R_{3}}=\frac{2 \mathrm{~V}}{2 \mathrm{k} \Omega}=1 \mathrm{~mA}$

From Ohm's law, current I_{1} is given by
$I_{1}=\frac{12 \mathrm{~V}-10 \mathrm{~V}}{R_{1}}=\frac{2 \mathrm{~V}}{1 \mathrm{k} \Omega}=2 \mathrm{~mA}$
From Ohm's law, current I_{2} is given by
$I_{2}=\frac{10 \mathrm{~V}-5 \mathrm{~V}}{R_{2}}=\frac{5 \mathrm{~V}}{5 \mathrm{k} \Omega}=1 \mathrm{~mA}$
From Ohm's law, current I_{3} is given by
$I_{3}=\frac{12 \mathrm{~V}-8 \mathrm{~V}}{R_{4}}=\frac{4 \mathrm{~V}}{2 \mathrm{k} \Omega}=2 \mathrm{~mA}$
From Ohm's law, current I_{4} is given by
$I_{4}=\frac{8 V-5 V}{R_{5}}=\frac{3 V}{3 k \Omega}=1 \mathrm{~mA}$
From Ohm's law, current I_{5} is given by
$I_{5}=\frac{8 \mathrm{~V}}{R_{6}}=\frac{8 \mathrm{~V}}{4 \mathrm{k} \Omega}=2 \mathrm{~mA}$

Problem 2.12

Application of Ohm's law results in
$I_{1}=\frac{34 \mathrm{~V}-24 \mathrm{~V}}{R_{1}}=\frac{10 \mathrm{~V}}{2 \mathrm{k} \Omega}=5 \mathrm{~mA}$
$I_{2}=\frac{24 \mathrm{~V}-10 \mathrm{~V}}{R_{2}}=\frac{14 \mathrm{~V}}{2 \mathrm{k} \Omega}=7 \mathrm{~mA}$
$I_{3}=\frac{24 \mathrm{~V}-28 \mathrm{~V}}{R_{3}}=\frac{-4 \mathrm{~V}}{2 \mathrm{k} \Omega}=-2 \mathrm{~mA}$
$I_{4}=\frac{34 \mathrm{~V}-28 \mathrm{~V}}{R_{4}}=\frac{6 \mathrm{~V}}{0.6 \mathrm{k} \Omega}=10 \mathrm{~mA}$
$I_{5}=\frac{28 \mathrm{~V}-10 \mathrm{~V}}{R_{5}}=\frac{18 \mathrm{~V}}{6 \mathrm{k} \Omega}=3 \mathrm{~mA}$
$I_{6}=\frac{28 \mathrm{~V}}{R_{6}}=\frac{28 \mathrm{~V}}{5.6 \mathrm{k} \Omega}=5 \mathrm{~mA}$
$I_{7}=\frac{10 \mathrm{~V}}{R_{7}}=\frac{10 \mathrm{~V}}{1 \mathrm{k} \Omega}=10 \mathrm{~mA}$

Problem 2.13

The total voltage from the four voltage sources is
$\mathrm{V}=\mathrm{V}_{\mathrm{s} 1}+\mathrm{V}_{\mathrm{s} 2}+\mathrm{V}_{\mathrm{s} 3}+\mathrm{V}_{\mathrm{s} 4}=9 \mathrm{~V}+2 \mathrm{~V}-3 \mathrm{~V}+2 \mathrm{~V}=10 \mathrm{~V}$
The total resistance from the five resistors is
$\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}+\mathrm{R}_{5}=3 \mathrm{k} \Omega+5 \mathrm{k} \Omega+4 \mathrm{k} \Omega+2 \mathrm{k} \Omega+4 \mathrm{k} \Omega=18 \mathrm{k} \Omega$
The current through the mesh is
$I=\frac{V}{R}=\frac{10 \mathrm{~V}}{18000 \Omega}=\frac{5}{9} \mathrm{~mA}=0.5556 \mathrm{~mA}$

From Ohm's law, the voltages across the five resistors are given respectively
$\mathrm{V}_{1}=\mathrm{R}_{1} \mathrm{I}=3 \times 5 / 9 \mathrm{~V}=15 / 9 \mathrm{~V}=5 / 3 \mathrm{~V}=1.6667 \mathrm{~V}$
$\mathrm{V}_{2}=\mathrm{R}_{2} \mathrm{I}=5 \times 5 / 9 \mathrm{~V}=25 / 9 \mathrm{~V}=2.7778 \mathrm{~V}$
$\mathrm{V}_{3}=\mathrm{R}_{3} \mathrm{I}=4 \times 5 / 9 \mathrm{~V}=20 / 9 \mathrm{~V}=2.2222 \mathrm{~V}$
$\mathrm{V}_{4}=\mathrm{R}_{4} \mathrm{I}=2 \times 5 / 9 \mathrm{~V}=10 / 9 \mathrm{~V}=1.1111 \mathrm{~V}$
$\mathrm{V}_{5}=\mathrm{R}_{5} \mathrm{I}=4 \times 5 / 9 \mathrm{~V}=20 / 9 \mathrm{~V}=2.2222 \mathrm{~V}$

Problem 2.14

Radius is $\mathrm{r}=\mathrm{d} / 2=0.2025 \mathrm{~mm}=0.2025 \times 10^{-3} \mathrm{~m}$ $\mathrm{A}=\pi \mathrm{r}^{2}=1.28825 \times 10^{-7} \mathrm{~m}^{2}$
(a)

$$
R=\frac{\ell}{\sigma A}=\frac{20}{5.69 \times 10^{7} \times \pi \times\left(0.2025 \times 10^{-3}\right)^{2}}=2.7285 \Omega
$$

(b)

$$
R=\frac{\ell}{\sigma A}=\frac{200}{5.69 \times 10^{7} \times \pi \times\left(0.2025 \times 10^{-3}\right)^{2}}=27.2846 \Omega
$$

(c)

$$
R=\frac{\ell}{\sigma A}=\frac{2000}{5.69 \times 10^{7} \times \pi \times\left(0.2025 \times 10^{-3}\right)^{2}}=272.8461 \Omega
$$

(d)

$$
R=\frac{\ell}{\sigma A}=\frac{20000}{5.69 \times 10^{7} \times \pi \times\left(0.2025 \times 10^{-3}\right)^{2}}=2728.4613 \Omega
$$

Problem 2.15

From Ohm's law, the voltage across R_{2} is given by
$\mathrm{V}_{2}=\mathrm{I}_{2} \mathrm{R}_{2}=3 \mathrm{~mA} \times 2 \mathrm{k} \Omega=6 \mathrm{~V}$
From Ohm's law, the current through R_{3} is given by
$I_{3}=\frac{V_{2}}{R_{3}}=\frac{6 \mathrm{~V}}{3 \mathrm{k} \Omega}=2 \mathrm{~mA}$
According to KCL, current I_{1} is the sum of I_{2} and I_{3}. Thus, we have
$\mathrm{I}_{1}=\mathrm{I}_{2}+\mathrm{I}_{3}=3 \mathrm{~mA}+2 \mathrm{~mA}=5 \mathrm{~mA}$
The voltage across R_{1} is given by
$\mathrm{V}_{1}=\mathrm{R}_{1} \mathrm{I}_{1}=1 \mathrm{k} \Omega \times 5 \mathrm{~mA}=5 \mathrm{~V}$

Problem 2.16

From Ohm's law, the currents $\mathrm{I}_{2}, \mathrm{I}_{3}$, and I_{4} are given respectively by

