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Chapter 1

The Real Number System

1.1 The Field Properties
EXERCISE SET 1.1-A

. A0, A1, A2, M0, M1, M2, M3, D. 2. A0, A1, A2, A3, A4, M0, M1, M2, M3, D; i.e., all but M4.
. All field axioms. 4. A0, A1, A2, M0, M1

. A0, A1, A2, A3, A4, but not MO. Thus, M1 - M4 and D are not relevant.

. A0, A1, A2, A3, A4, M1, D. 7. A0, A1, A2, A3, A4, MO, D.

. All field axioms. 9. All field axioms. 10. All field axioms except M4.

o O Ot W =

EXERCISE SET 1.1-B

l.2#0=Jue Fozu=ux =1 Then zy=2zz= u(zy) =u(zz) = (uz)y = (uz)z = ly=12=y =z

2. Suppose 1, 1’ both have property described in (M3);i.e.,Ve € F,z-1=2and z-1"=xz. Then 1 -1=1
and 1- 1’—1 But1-1=1-1,s01 =1.

3. Suppose z # 0 and u, u’ both have property described in (M4); i.e., zu =1, and zv' = 1. Then u = ul
=u(zu') = (uz)v' = v/ =o'

4. By (M3), (M1), (M4), & defn. of 171, 17 =171 1=1-1"1 = 1.

5. Suppose x # 0. Then zz~! =1 #0, soby() “L4£0.

6. Suppose 2,y # 0. Then by (M4), 3271 y~ 1. If zy = 0, then by (d), 27! (2y) = 2710 = 0. But
x Yzy) = (71 )y = ly =y # 0. Contradiction. .., zy # 0.

Now (zy)(z~ty~1) = (wy)(y 1z~ =a(yy Ho ! =zx~! =1. - by Thm.1.1.3(d), (zy) ' =2y~ L
7. Using (b) and (M2), (~2)y = [(~1)aly = (~1)(zy) = —(zy). Similarly, 2(—y) = 2[(~1)y] = [#(~ D]y
= [(=Daly = (-2)y.
8. By (i), (=1)(=1) = —=(1- 1) = —=(=1) = 1 by (b).
9. Using (i), (~2)(~y) = —[x(~y)] = —[~(zy)] = zy by (b).

10. By defn. of subtraction, 0 —z =0+ (—z) = (—z) + 0 = —z by (A1) and (A3).
11. By Thm.1.14 (h), —(z+y) = (-1)(z+y) = (-1)z+ (-1)y = —z + (—y) = —z — y by Defn.1.1.5.

12. By Thm.1.1.4 (h), and (D), —(z—y) = (-1)(z—y) = (-1)z+ (-1)(~y) = —z+ly=y+(—z) =y —=x
by defn. of subtraction.

13. By Defn.1.6, 2 #0 = 0+ 2 = 0x~! = 2710 = 0 by Thm.1.1.4 (d).

4. z+1l=z-1"'=z-1=x;and 1+2=1-27 =27 1=2"1

15. By Thm.1.1.4, (—z)(—2~1!) = zz=! = 1. Apply Thm.1.1.3 (d).

3
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4 CHAPTER 1. THE REAL NUMBER SYSTEM

16. For b,d # 0, % + 2 = % + % by (e) and (M1)] = (ad)(bd)~" + (bc)(bd)~" [by defn. of fraction]
= (ad+be) ) [by (D)] = L0
17. Suppose b,d # 0. Then (supply reasons) ¢ - ¢ = (ab™1)(cd™) = [(ab™!)cJd™ = [a(b~ c)]d™?

= la(cb=H]d™! = [(ac)b~d~! = (ac)(b~1d1) = (ac)(bd) "' = 2.

[by defn. of fraction].

18. For b # 0, —% =—lab7t] = (—a)b ! = —Ta [by defn. of fraction, Thm.1.1.4 (i) and defn. of fraction]
=a(—(b71)) = a(-b)~! [by Thm.1.1.4 (i) and Thm.1.1.8 (c)] = ib by defn. of fraction.

19. a,b#0 = % : 2 - Z—s - Z—Zb’ = (ab)(ab)~' = 1. Apply Thm.1.1.3 (d).
20. Suppose a # 0. Then a (%) +b=a[(=b)a '] +b=[a(a™)](=b) +b=1(-b)+ b= —b+b=0.
Thus, %b is a solution to the equation ax + b = 0. Suppose y is a solution to this equation. Then
ay=(ay+b) —b=0—-b=—b;ie,ay=—b .. y=ylaa ") =ay(a™?) = (~ba"t = =2

a

1.2 The Order Properties

EXERCISE SET 1.2-A

. #3, #8

.ByDefn.124, 2 >0 0<zeozr-0cPeszeP. Also,z<0&0—zecP & —xeP.

. By (O3) one & only one is true: y—x € P,z —y€eP,y—xz=0.

By (b,z<yez<yorz=y|lez iy Also,z>ysz>yorz=y|Sy<zory=z]<zLy.
. ¢,y negative= —x,—y € P = (—z)(—y) € P = zy € P.

. Suppose z positive and y negative. Then z € P, —y € P. By (02), —zy = z(—y) € P; i.e., xy negative.

L =2 5L BN L R VI

. Suppose zy > 0. Then z,y # 0. If x,y do not have the same sign, then one must be positive and the
other negative. Then, by (d), zy < 0. Contradiction.

8. Suppose zy < 0. By (02), z and y are not both positive, and by (b) they are not both negative. Also,
z,y # 0. .. one of them is positive and the other is negative.

9. 1=1%2and 1 # 0. Apply Thm.1.2.6 (c).

10.z<yecy—2ePo (y+z2)—(z4+2) e P ax+z<y+z Also,& (y—z)—(r—2)eP S ax—z<y—=z.

11. Suppose 2 < 0. Thenz<y=y—z€P,—z2€P = —z(y—xz)€EP =>xz—yx € P =y > 12

12. Suppose z,y > 0, and 2 < y?. Then y?> —2? > 0, so (y — z)(y + =) > 0. By Thm.1.2.6 (a), y — = and
y + = must have the same sign, so y —x > 0; i.e., x < y.

13. (a) 27! =1 > 0, so by Thm.1.2.6 (e), , 2~ ' have the same sign. To prove (b) and (c), apply part
(a) to Thm.1.2.8 (c¢) and (d).

14. Suppose 0 <y~ ! <z~

Then, by the “=" part, 0 < (z71)71 < (y7 1)L ie, 0 <2 <y.

15 z<yu<v=(y—=z),v-—u)eP=y—z)+v-—u)eP=(y+v)—(z+u) eP=>c+u<y+o.

16. Suppose 0 <z <y and 0 <u <wv. By (a), 0 <v~! <u~?, so by the first claim, 0 < zv~! < yu™!; i.e.,
0< o<

17. By (b),z<y=z+z<y+z=z+y<y+y=2z<a+y<2y soby Cor.1.29 (b), z < ZH < y.

18. Let > 0. Since 0 <2 <1,0< £ <z by Thm.1.2.8 (¢). Thus, 2 cannot be the smallest positive
element of F'.

19. (O1) a+bV2,c+dvV2E€P =a>bV/2,c>dvV2= (a+c)>(b+d)vV2=(a+c)+ (b+d)V2eP
= (a+bv2) + (c+d)V2 e P
(02) a > V2, c > dV2 = (a—bv2)(c—d)v2 > 0 = (ac+2bd) > (ad+bc)v2 = (ac+2bd)+(ad+bc)v2 €
P = (a+bV2)(c+dv2) € P
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1.2. THE ORDER PROPERTIES 5

(03) Given a,b € Q, exactly one is true: a > bv/2, a = bv/2, a < by/2.
Case 1: a >bvV/2 = a+b/2€P.
Case 2: a=bV2=a=0b= 0, since otherwise % = \/5, which would tell us that /2 is rational. So,

in this case a + bv/2 = 0.
Case 3: a < bv2 = (—a) > (=b)vV2 = (—a) + (-b)V2 € P' = —(a + bV2) € P'.

20. The field given in Ex.19 can be ordered by the usual set P = {a + W2 :a+bvV2 > 0} and the set P’
given in that exercise.

21. If C were an ordered field, then by Thm.1.2.6 (c), i2 > 0. But i = —1, which is < 0 by Cor.1.2.7.

22. Consider the field F' given in Ex.1.1-A.9. Since 1 >0,4=141+1+41>0. But4d=—-1in F. If F
were an ordered field, this would violate the law of trichotomy since —1 < 0.

EXERCISE SET 1.2-B

1. (a) By (03), 2 > 0 or z < 0. In the former case || = > 0 and in the latter, |2| = —z > 0.
(d) [z =yl == (y—2)| = |y — 2| by (b).

(e) We have four cases:
(1) 2 >0,y > 0. Then xy > 0 and |zy| = zy = |z||y|.

)
(2) >0,y < 0. Then zy <0 and |zy| = —zy = z(—y) = |z||y|.
(3) 2 <0,y >0. Then 2y <0 and |zy| = —zy = (—2)y = |=||y|.
(4) £ <0,y < 0. Then zy > 0 and |zy| = zy = (—z)(—y) = |z||ly|.
2. Let a > 0.
(a) Let x € F. By the law of trichotomy we must have > 0 or x < 0.

Case 1 (x > 0): Then || =z. Thus, [z|<eer<ae —a<z<a.
Case 2 (x < 0): Then |x| = —z. Thus, [z|<ae& —zr<as —a<z<a.

(b)By (a), [z —y|<a & —a<z—y<a< y—a<z<y—+aby Thm.1.2.8 (b).

3. (¢) By (b), |z| — [yl <[z —y| and |y| — || < |z —y[. Since [|z[ - [y|| = either [z] —|y| or |y| — |z|,
the desired result follows.

4. (¢) Let z < y in (a,b], and z € [z,y]. Thena <z <z <y <b,so z € (a,b]. .. [z,y] C (a,b)].
(g) Let x <y in (a,+00), and z € [z,y]. Then a < x < z <y, s0 z € (a,+0). .. [z,y] C (a,+00).

5. Let A=U{[y,2] :y,z€ I}. Show A=1.
x € A= x€|y,z| for some y,z € [ = x € I since I is an interval. Thus, A C I.
€l =[z,2] CI=x€ A Thus, I CA.

6. Let x,y € F. WLOG, x <y. Then, |z —y| =y —z, max{z,y} =y, and min{z,y} = z. Then

rH+y+lr—yl r+y+y—x) 2y

il i —(y—z) 2
*Zyzmax{x,y},andm—'_y |z y\:x—i—y (y—z) 2o

2 2 2 2 2 -2
=z = min{z, y}.
7.z <y=min{z,y} =2 = —(—z) = —max{—=z, —y} since —y < —z.
1
8. Suppose 0 <z <y. Then0<1+z<1+y,soby Thm.1.2.10 (a), 0 < 1oy < Tra Thus, by
Y x
Thm.1.2.8 (c), — a i a i

) = < ) < .
14y " 14+z 14z SOl—i—y 1+
9. Multiply both sides of the given inequality by the lowest common denominator. Prove the resulting
inequality and then divide both sides by the LCD.
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6 CHAPTER 1. THE REAL NUMBER SYSTEM

1.3 Natural Numbers
EXERCISE SET 1.3

1.1-1¢Np;1+2¢Np.
2. Let n € N. If n > 1, then by Thm.1.2.8 (c), n? > n > 1> 0 so by Thm.1.2.10 (a), 0 < 5> < 1 < 1.
Ifn:l,then0<$=l:1. Thus,VneN,0<$§%§1.

In Exercises 3 - 19 we show only the induction step, P(k) = P(k+ 1). Begin by assuming P(k). Then,

3142434+ k+(k+1)=2E0 4 (k1) = (k4 1) [£ 1] = GEUE2) _ BHDIGEDA],

4012422 4 p B2 (k4 1)2 = BEEDCAD 4 g 4 1)2 = (k4 1) [2’%’%%} = (k 4 1)E24TkL6
_ (k+1)(k+2)(2k+3) _ (k+1)(k+2)[2(k+1)+1] _ (k+1D)[(k+1)+1][2(k+1)+1]
- 6 - 6 - 6

[4)]

B2k (k)P = BB (4 1)3 = (k412 [% +(k+ 1)] = (k+1)2h2dkes _ (ob))* (b2)"
6. 1+3+5+ - +[2k+1)—1]=1434+5+-+@2k—1)+2k+1)—1]=k+2k+1)=(k+1)%

1A+ T A B 1) —2 =14 T4+ 3k —2) + [k + 1] = ECETD 4 gk 4 = 3kT45k42
_ (k+1)(3k+2) _ (k+1)(3(k+1)—1)
- 2 = 2 :

J

8. By P(k), 3m € N3 k(k+1)(k+2) = 3m. Then, (k+1)(k+2)(k+3) = k(k+1)(k+2) +3(k +1)(k +2)
= 3m+3(k+1)(k +2) = 3[m + (k+ 1)(k + 2)], which is divisible by 3.
9. By P(k), k% — k = 5m for some m € Z. Then (k+1)° — (k+1) = &>+ 5k* + 10k + 10k + 5k + 1 — k — 1
= (k® — k) + (5k* 4+ 10k + 10k* + 5k) = 5[m + k* + 2k3 + 2k + k).
10. 1+ 3+34+ - +@m=1+3+i+  +F+a7m=0C-F)+x7=x=2-%[1-1] =2- &=
e e R (O T I
a — arktl bkl = O arktt 4 ark (1 — ) _a-— arktD+1
1—7r 1—r 1—7r
13. 2F 1 =2R2 < (k+ )12 < (kK + 1)!(k +2) = (k +2)..
14. 1+ 2) ' =1 +2)* 1 +2)=0+2)+z(l+z)f >1+kr+a(l+2)f > 1+kr+ax=1+(k+ 1)
15. (1+2)" = (1 +2)F(1+2) > [1+ ko + Lk (k — 1)2%)(1 + ) since z > 0.
=l+ka+sk(k —Da?+a+ka?+ik(k — 12 > 1+ (k + Do+ [3k(k — 1) + k]2?
=1+ (k+ Do+ [Lk2+1k]22 =14+ (k + Do+ 1(k + Dka®
16. By P(k), 3m € N 213F — 6% = 7m. Then 13k*! — ¥+ =13 .13k — [13 — 7)6* = 13[13% — 6*] + 7. 6F
= 13(7m) + 7 - 6% = 7[13m + 6*], which is divisible by 7.
17. Assume 22F~1 1 = 3m for some m € N. Then 22(-+1)=1 1 1 = 92k+1 11 = 229261 1 1 — 4(3m — 1)+ 1
=12m —4+1=3(4m—1).
18. Suppose ng € N and p(n) is a proposition satisfying the given hypotheses. Let g(n) be the proposition
p(ng — 14 n). Then,
(i) ¢(1) = p(ng), which is true by hypothesis.
(ii) Assume k € N and ¢(k) is true. Then ng — 1+ k =mno + (k— 1) > ng and p(ng — 1 + k) is true.
.. by hypothesis (2), p(ng — 1+ k + 1) is true; i.e.,, ¢(k + 1) is true. Therefore, q(k) = q(k + 1).
By the principle of mathematical induction, ¥n € N, ¢(n) is true. .. Vn € N, p(ng —1+n) is true. That
is, Vn > ng in N, p(n) is true.
19. oM — M = ake — by = afe —yha +yte - yry = a(aF — o) i@ - y)
=a(@—y) @+ Py + a0y oyt Ty ) ()
= (z— y)(ab + aF Ly 4 2P 2y o ayRl g gk,
20. Let m € N be fixed, and Vn € N, let p(n) denote a™a"™ = a™*". Then
(i) p(1) is true since by Defn.1.3.12, a™*1 = a™al.
(ii) Assume p(k). Then a™a**! = a™[a*a] = [a™a*|a = a™T*a = a™FHL. - p(k+1).

12. atar+ar?+ - +arktl =
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1.4. RATIONAL NUMBERS 7

21. Let a,b € R, let m be a fixed element of N, and Vn € N, let p(n) denote (a™)™ = a™". Then
(i) p(1) is true since by Defn.1.3.12, (a™)! = a™.
(ii) Assume p(n). Then (a™)"*! = (a™)"a™ = a™"a™ = a"™"+t"a = ™"tV - p(n+1).
22. Let a,b € R and Vn € N, let p(n) denote a™b™ = (ab)™. Then
(i) p(1) is true since a'b* = ab = (ab)!.
(ii) Assume p(k). Then a**t1bF*tl =aF . a-b% - b= a*b* - ab = (ab)*(ab) = (ab) 1. - p(k+1).

m () () () e ()

n ny n! n! _nlk+nln+1-k) nlk4+n+1-—k)
<k1>+<k)_(k1)!(n+1k)!+k:!(nk)!_ Mo+ 1—k) Mo+l —h)
_onln+1) (n+1) _<n+1>
S kK(n+1-k)!  kn+1-k! \ k)

n
24. Let a,b € R, and Vn € N, let p(n) denote (a +b)" = Y (})a" *b*. Then
k=0
1
(i) p(1) is true since kzo (p)at=Fbk = (3)att® + (})a’b' =a+b=(a+b).

(ii) Assume p(n). Then (a+ b)"*! = (a + b)"(a +b) = ()am—kok + bkgo (R)an—kok =

kZO
1, 8= (n Vkpk S n kpk+1 1 1_"n 1—kpk N n 1—kpk 1
a™t +k21 (k)a’”r —*p —4—,;;0 (k)a”* pEtl ppntl = gnt +k§; (k)a"+ —Fp —|—bk§;1 (1671)617‘+ —kpF 4 pnt
n 1

+
=a"t1 4+ ¥ {(2) + (kfl)} anti=kpk opntl = nZ (" a I =Epk (See Ex.23.)
k=1 k=0

1.4 Rational Numbers
EXERCISE SET 1.4

1. The sum of any two integers is an integer, so (A0) is true. The product of any two integers is an integer,
so (MO) is true. (Al), (A2), (M1), (M2) and (D) are inherited from F.
(A3) 0 is an integer, and for all integers x, x + 0 = x.
(A4) For all integers z, —x is an integer, and « + (—z) = 0.
(M3) 1 is an integer, and for all integers z, z -1 = x.
7 does not satisfy (M4): for example, 2 € Z but iy € Z > 2y = 1.

2. Let F be any ordered field. First, N C F' by defn. of N. Then, Vm € Z, m € N, —m € N, or m = 0; in
any case, me€ F. - Z CF.
Finally, Ve € Q, Am,n € Z>x =mn~',n # 0. Thus, since F is a field, z € F. - QCF.
. Let n € Z. n not divisible by 2 = 3k € Z > n = 2k + 1 = n? = 4k? + 4k + 1 = n? not divisible by 2.
4. First, we prove the lemma: Vn € Z, if n? is divisible by 3, then n is divisible by 3.
Proof: We prove the contrapositive. Suppose n € Z is not divisible by 3. Then n is of the form
3m+1 or 3m + 2, for some m € Z. But (3m + 1)? = 9m? 4+ 6m + 1 = 3[3m? + 2m] + 1, and (3m + 2)?
= 9m? + 12m + 4 = 3[3m? + 4m] + 1, neither of which is divisible by 3. .. n? is not divisible by 3.
Then, redo the proof of Thm.1.4.5, replacing 2 by 3 at appropriate places.

95

5. Suppose z is rational and y is irrational, and let z =z 4+ y. Then y = z — 2. If z is rational than so is
y, since Q is a field, which would be a contradiction.

. Suppose x # 0 is rational and y is irrational, and let z = 2y. Then y = z2z~ .

y, since Q is a field, which would be a contradiction.

If 2z is rational than so is

=2}

7. Let z be irrational. Since z + (—z) = 0, Ex.5 says —z cannot be rational. Since z(z~!) = 1, Ex.6 says

2z~ ! cannot be rational.

Qo

. Let z be irrational. Then, by Ex.7, —z is irrational. But z 4+ (—z) = 0, which is rational.

V22 =2

©


https://ebookyab.ir/solution-manual-real-analysis-denlinger/

https://ebookyab.ir/solution-manual-real-analysis-denlinger/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

8 CHAPTER 1. THE REAL NUMBER SYSTEM

10. Vn € N, n + v/2 is irrational, by Ex.5. Moreover, n + v/2 = m + v/2 = n = m, so there are infinitely
many such irrational numbers.

11. Repeat the proof of Ex.1.3.18, replacing N by {n € Z: n > ng}.

12. Let 2,y € Z. Then
Case 1 (z,y € N): Then x + y and zy are unique elements of N, hence of Z.

Case 2 (—x,—y € N): Then —x —y = —x + (—y) is a unique element of N, so z +y = —(—z — y) € Z.
Similarly, zy = (—z)(—y) € Z.

Case 3 (—z € N,y € N): Then —(zy) = (—x)y is a unique element of N, so zy € Z. To show z+y € Z
requires a subtler argument.
Subcase a (—z < y): By Thm.1.3.7, y — (—z) € N, so x + y € N, hence z + y € Z.
Subcase b (—z > y): By Thm.1.3.7, -z —yeN,sox+y = —(—x —y) € Z.

Case 4 (z € N, —y € N): Same as case 3, with = and y interchanged.

1.5 The Archimedean Property

EXERCISE SET 1.5

1.2€ Q= 2= ¢ forsome a €Z,beN. Then|a|—|—1>%2%:mand|a|+1€N.

N

. Assume (a) and let z € F. Then |z|+1>0. By (a), meN>n>|z|+1. Thenn>zx. .. AP

w

. Assume F" has A.P., and a > 0. Then Vz € F', Z € F'so by A.P. 3n € N>n > Z. Since a > 0, this
means na > .

I’

. Assume (c) and let > 0. Then 1 > 0. By (c), In€ N> 1 < 1. Then by Thm.1.2.10 (a), n > =.

<)

. Suppose = € Archimedean F'. First prove existence. If x is an integer, take n = x + 1. If x is not an
integer then x > 0 or x < 0. The first case is covered by Thm.1.5.3. Suppose < 0. Then —z >0
so by Thm.1.5.3, Im e N> m -1 < —x <m. Then —m < x < —m + 1, so we may take n = —m + 1.
Uniqueness follows by the argument given in Thm.1.5.3.

6. Let F' be an Archimedean ordered field with at least one irrational element, z. Then |z]| is irrational.

Let a <bin F. Then1 i<7“<£.

|2l E

. . . b
We can choose r to be nonzero, since if 7 = 0, we simply choose rational v’ > r < r’ < —. Then, by

2]

b
] < ﬂ Since the rationals are dense in F by (a), 3 rational 7 >
z z

Ex.1.4.6, r|z| is irrational, and a < r|z| < b.

J

. Let z <y in an ordered F. Then z < %ry <y (Thm.1.2.10 d).

Qo

. Suppose S is dense in F', and let a < bin F. Then ds; € S>a < s <b, and Jsy € 3 51 < 89 < b,
and so on by mathematical induction: if we have s1,89,--- ,sxin S22 a < s1 <s3<-+- < s <b, we
can choose sk11 € S 3 sk < sg11 < b. Then {si : k € N} is a set of infinitely many different elements of
S lying between a and b.

9. Suppose that Ve > 0, z < a+e. Then Ve >0, 2 —a <e,s0 by (a), z —a < 0; ie., z < a.
10. Suppose that Ve > 0, |z| <e. By (a), |z] < 0. But |z| >0, so |z| = 0, which implies 2z = 0.
11. Suppose that Ve > 0, [a —b| <e. By (a), [a—b| <0. But |a —b] >0, s0 |a —b] =0;ie,a=h

12. (a) Suppose that Ve > 0, z > —e. Then Ve > 0, —z < &, so by the forcing principle, —x < 0. ..z > 0.
(b) Suppose that Ve >0,z >a—¢ (x —a > —¢). Thenby (a),z—a>0. . z>a.
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1.6 The Completeness Property

EXERCISE SET 1.6-A

1. (a) Yes; 3,4,86; 3 (b) Yes: 3,4,86; 3  (c) Yes; 4,4.01,86: 3 (d) Yes; 5,6,29; 5 (e) Yes; 0,0.2,86; 0
(f) No (g) Yes; —100,0,25; none (h) Yes; 1,2,24; 1 (i) No (j) Yes; 1,1.8,50; 1 (k) Yes; 2,3, 86; 2
(1) Yes; 3/2,2,3; 3/2  (m) Yes; 2,3,86; 1.5 [Draw graph of f(z) =1+ 1 forz >2.] (n) Yes; 1,2,10; 1
(a) Yes; —1,—-2,—100; =1 (b) Yes; —1,—2,—50; —1 (c) Yes; 1,0,—20; 1 (d) Yes; 5,0,—5; 5 (e) No
(f) Yes; 0,—1,—50; 0 (g) Yes; —100,0,25; none (h) Yes; 0,—1,—10; 0 (i) Yes; 0, —1, —100; 0 [Draw
graph of f(z) = %] (j) Yes; 1/2,0,—1; 1/2 (k) Yes; 1,0,—100; 1 [Draw graph.] (1) Yes; 1,0,—1; 1
(m) Yes; 2,1,—100; 1 [Draw graph.] (n) Yes; —1,-2,—-20; —1
3. Examples given in Ex.1 and 2.

4. Suppose u = min A and v = min A. Thenu € AandVz € A, u<z. Also,ve AandVz e A, v <x.
Thus, u <vand v <wu. ..u=nw.

5. Alter the proof already given that shows S has a maximum element.

6. (i) By defn. of (a,b), b is an upper bound for (a, b).
(ii) Suppose v is an upper bound for (a,b). We want to prove b < v. For contradiction, suppose b > v.
Let ¢ = ”T*b. Then a < v < ¢ <b. Then c € (a,b) and ¢ > v, contradicting the fact that v is an upper
bound for (a,b). ...b<w.
By (i) and (ii) together, b = sup(a, b).

7. Alter the proof of part (a) given.

8. Suppose m = min A. Then m € A and Va € A, m < a. Thus, m is a lower bound for A. If v is any
lower bound for A, then v < m, since m € A. ...m =inf A. The argument for max. is similar.

9. Ifu=inf A € A, then u € A and Va € A, a > u, so by defn., v = min A.

10. Let n € N. Then n+ 1 € N. Therefore, n cannot be the maximum element of N. If the field F is
Archimedean, then N has no upper bound in F, so it cannot have a supremum. However, N does have
a minimum element, 1. . 1 =inf N.

11. Let F be Archimedean, A C F, and u € F.
(=) Suppose u =inf A. Lete>0. ThenVex € A,z >u>u—e. Also,u+¢e>inf A sou+eisnot a
lower bound for A, so dr € A>x <u+e.
(<) Suppose (a) and (b) hold. Then,
(I)Vze A,z >u—e. By Ex.1.5.12, z > u.
(2) Suppose v is a lower bound for A. For contradiction, suppose v > u. Let e = v —u. By (b),

dr e A>x <u-+e=wv. Contradiction. Therefore, all lower bounds of A are < u.
By (1) and (2) together, u = inf A.
12. u is a lower bound for A & Va€e A,u<a & Va€ A, —a< —u < —u is an upper bound for -A.

13. The («) direction is trivial; we prove (=). Suppose v =sup A and v ¢ A. Let € > 0. Then
(a) Vac A,z <u<u-+e.
(b) u — ¢ is not an upper bound for A, so 3a; € A>u—¢e < a; <u. Now a is not an upper bound for
A,s0das € Adu—e <a; <az <u. Apply mathematical induction. If a1,a0, -+ ,ap € A3 u—e<
a1 < ag < --- < ap < u, then ay is not an upper bound for A, so Jar+1 € A 3 ap < ax4+1 < u. By math
induction, {ay : k € N} consists of infinitely many members of A greater than u — ¢.

14.Forv¢ A,v=inf A& Ve >0, (a) Ve € A, > v — ¢, and (b) 3 infinitely many c € A>z <v+e.
The proof is a straightforward modification of that of Ex.13.

EXERCISE SET 1.6-B

1. Suppose A is a nonempty set with a lower bound in a complete ordered F'. By Ex.1.6-A.12, the set
—A={—a:a€ A} is bounded above. By completeness, Ju = sup(—A). Then
(a) Yae A, —a < u,s0a>—u.
(b) If v is any lower bound for A, then by Ex.1.6-A.12, —v is an upper bound for —A, so —v > w.
That is, v < —u.
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By (a) and (b) together, —u = inf A.

2. Suppose A C B and A # &.
(a) If B is bounded below, then Vb € B, b > inf B. Then Va € A, a € B, so a > inf B. Then inf B is a
lower bound for A, so inf B < inf A.
(b) If B is bounded above, then Vb € B, b < sup B. Then Va € A, a € B, so a < sup B. Then sup B is
an upper bound for A, so sup B > sup A.

3. Let A be a nonempty subset of ordered F' with an upper bound in F, and B be the set of all upper
bounds of A in F'. By completeness, Ju = sup A. then v € Band Vb € B, u <b. .., u =minB.

4. Suppose A # @& and is bounded below in F. Let B = {all lower bounds of A in F'}. By completeness,
Ju =inf A € B and u is the largest member of B. That is, inf A = max B.

5. Let a = sup A, b = sup B and ¢ = max{a,b}. Then
(a) Let t € AUB. Theneitherz € Asoz<a<c,orz€ Bsox<b<ec Thusz<ec.
(b) If d is any upper bound for AU B then d is any upper bound for A and d is any upper bound for B,

sod>aand d>b; thus d > c.

By (a) and (b) together, ¢ = sup AU B.

6. Let a > 0 in a complete F, and let A={x >0:22<a}and B={z >0:2% > a}.
Case 1 (a > 1): Then 1 € A, so A is a nonempty set bounded above by a (show). By completeness,
Ju =sup A. Then u > 1 since 1 € A. From here, follow the proof of Thm.1.6.10 verbatim, replacing
a in (1) by z, and 2 throughout by a.

Case 2 (0 <a<1): Then 1 >1and by Case 1, Ju€ F > u? =1 Then (%)2 =a.
Case 3 (a = 1): trivial.
7. (a) Ve € X, f(z)+g(z) <sup{f(z) :x € X}+sup{g(z) : € X}. Thus, sup{f(z):z € X}+sup{g(z) :
x € X} is an upper bound for {f(z) + g(x) : x € X}, so it is > the least upper bound.
(b) Yz € X, f(x)+g(z) > inf{f(z) : x € X} +inf{g(x) : ® € X}. Thus, inf{f(x): 2z € X} +inf{g(z) :
x € X} is a lower bound for {f(z) + g(z) : * € X}, so it is < the greatest lower bound.
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