Answers to selected exercises for chapter 1

1.1Apply $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$, then

> $f_1(t) + f_2(t)$ $= A_1 \cos \omega t \cos \phi_1 - A_1 \sin \omega t \sin \phi_1 + A_2 \cos \omega t \cos \phi_2 - A_2 \sin \omega t \sin \phi_2$ $= (A_1 \cos \phi_1 + A_2 \cos \phi_2) \cos \omega t - (A_1 \sin \phi_1 + A_2 \sin \phi_2) \sin \omega t$ $= C_1 \cos \omega t - C_2 \sin \omega t,$

where $C_1 = A_1 \cos \phi_1 + A_2 \cos \phi_2$ and $C_2 = A_1 \sin \phi_1 + A_2 \sin \phi_2$. Put A = $\sqrt{C_1^2 + C_2^2}$ and take ϕ such that $\cos \phi = C_1/A$ and $\sin \phi = C_2/A$ (this is possible since $(C_1/A)^2 + (C_2/A)^2 = 1$. Now $f_1(t) + f_2(t) = A(\cos \omega t \cos \phi - t)$ $\sin \omega t \sin \phi) = A \cos(\omega t + \phi).$

- Put $c_1 = A_1 e^{i\phi_1}$ and $c_2 = A_2 e^{i\phi_2}$, then $f_1(t) + f_2(t) = (c_1 + c_2)e^{i\omega t}$. Let 1.2 $c = c_1 + c_2$, then $f_1(t) + f_2(t) = ce^{i\omega t}$. The signal $f_1(t) + f_2(t)$ is again a time-harmonic signal with amplitude |c| and initial phase arg c.
- 1.5The power P is given by

$$P = \frac{\omega}{2\pi} \int_{-\pi/\omega}^{\pi/\omega} A^2 \cos^2(\omega t + \phi_0) dt = \frac{A^2 \omega}{4\pi} \int_{-\pi/\omega}^{\pi/\omega} (1 + \cos(2\omega t + 2\phi_0)) dt$$
$$= \frac{A^2}{2}.$$

The energy-content is $E = \int_0^\infty e^{-2t} dt = \frac{1}{2}$. 1.6

1.7The power P is given by

$$P = \frac{1}{4} \sum_{n=0}^{3} |\cos(n\pi/2)|^2 = \frac{1}{2}.$$

- The energy-content is $E = \sum_{n=0}^{\infty} e^{-2n}$, which is a geometric series with 1.8sum $1/(1-e^{-2})$.
- 1.9**a** If u(t) is real, then the integral, and so y(t), is also real. b

Since

$$\left|\int u(\tau)\,d\tau\,\right| \leq \int |\,u(\tau)\,|\,\,d\tau,$$

it follows from the boundedness of u(t), so $|u(\tau)| \leq K$ for some constant K, that y(t) is also bounded.

c The linearity follows immediately from the linearity of integration. The time-invariance follows from the substitution $\xi = \tau - t_0$ in the integral $\int_{t-1}^{t} u(\tau - t_0) d\tau$ representing the response to $u(t - t_0)$.

d Calculating $\int_{t-1}^{t} \cos(\omega \tau) d\tau$ gives the following response: $(\sin(\omega t) -$ $\sin(\omega t - \omega))/\omega = 2\sin(\omega/2)\cos(\omega t - \omega/2)/\omega.$ **e** Calculating $\int_{t-1}^{t} \sin(\omega \tau) d\tau$ gives the following response: $(-\cos(\omega t) + \omega)$

 $\cos(\omega t - \omega))/\omega = 2\sin(\omega/2)\sin(\omega t - \omega/2)/\omega.$

f From the response to $\cos(\omega t)$ in d it follows that the amplitude response is $|2\sin(\omega/2)/\omega|$.

g From the response to $\cos(\omega t)$ in d it follows that the phase response is $-\omega/2$ if $2\sin(\omega/2)/\omega \ge 0$ and $-\omega/2 + \pi$ if $2\sin(\omega/2)/\omega < 0$. From https://ebookyab.ir/solution-manual-fourier-and-laplace-transforms-beerends-ter-morsche/ Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

Answers to selected exercises for chapter 1

phase and amplitude response the frequency response follows: $H(\omega) = 2\sin(\omega/2)e^{-i\omega/2}/\omega$.

- 1.11 **a** The frequency response of the cascade system is $H_1(\omega)H_2(\omega)$, since the reponse to $e^{i\omega t}$ is first $H_1(\omega)e^{i\omega t}$ and then $H_1(\omega)H_2(\omega)e^{i\omega t}$.
 - **b** The amplitude response is $|H_1(\omega)H_2(\omega)| = A_1(\omega)A_2(\omega)$.
 - **c** The phase response is $\arg(H_1(\omega)H_2(\omega)) = \Phi_1(\omega) + \Phi_2(\omega)$.
 - **a** The amplitude response is $|1 + i| |e^{-2i\omega}| = \sqrt{2}$. **b** The input u[n] = 1 has frequency $\omega = 0$, initial phase 0 and amplitude 1. Since $e^{i\omega n} \mapsto H(e^{i\omega})e^{i\omega n}$, the response is $H(e^0)1 = 1 + i$ for all n. **c** Since $u[n] = (e^{i\omega n} + e^{-i\omega n})/2$ we can use $e^{i\omega n} \mapsto H(e^{i\omega})e^{i\omega n}$ to obtain that $y[n] = (H(e^{i\omega})e^{i\omega n} + H(e^{-i\omega})e^{-i\omega n})/2$, so $y[n] = (1+i)\cos(\omega(n-2))$. **d** Since $u[n] = (1 + \cos 4\omega n)/2$, we can use the same method as in b and c to obtain $y[n] = (1 + i)(1 + \cos(4\omega(n-2)))/2$.
- 1.13 **a** The power is the integral of $f^2(t)$ over $[-\pi/|\omega|, \pi/|\omega|]$, times $|\omega|/2\pi$. Now $\cos^2(\omega t + \phi_0)$ integrated over $[-\pi/|\omega|, \pi/|\omega|]$ equals $\pi/|\omega|$ and $\cos(\omega t)\cos(\omega t + \phi_0)$ integrated over $[-\pi/|\omega|, \pi/|\omega|]$ is $(\pi/|\omega|)\cos\phi_0$. Hence, the power equals $(A^2 + 2AB\cos(\phi_0) + B^2)/2$. **b** The energy-content is $\int_0^1 \sin^2(\pi t) dt = 1/2$.
- 1.14 The power is the integral of $|f(t)|^2$ over $[-\pi/|\omega|, \pi/|\omega|]$, times $|\omega|/2\pi$, which in this case equals $|c|^2$.
- 1.16 **a** The amplitude response is $|H(\omega)| = 1/(1 + \omega^2)$. The phase response is $\arg H(\omega) = \omega$.

b The input has frequency $\omega = 1$, so it follows from $e^{i\omega t} \mapsto H(\omega)e^{i\omega t}$ that the response is $H(1)ie^{it} = ie^{i(t+1)}/2$.

1.17 **a** The signal is not periodic since $\sin(2N) \neq 0$ for all integer N.

b The frequency response $H(e^{i\omega})$ equals $A(e^{i\omega})e^{i\Phi e^{i\omega}}$, hence, we obtain that $H(e^{i\omega}) = e^{i\omega}/(1+\omega^2)$. The response to $u[n] = (e^{2in} - e^{-2in})/2i$ is then $y[n] = (e^{2i(n+1)} - e^{-2i(n+1)})/(10i)$, so $y[n] = (\sin(2n+2))/5$. The amplitude is thus 1/5 and the initial phase $2 - \pi/2$.

1.18 **a** If u(t) = 0 for t < 0, then the integral occurring in y(t) is equal to 0 for t < 0. For $t_0 \ge 0$ the expression $u(t - t_0)$ is also causal. Hence, the system is causal for $t_0 \ge 0$.

b It follows from the boundedness of u(t), so $|u(\tau)| \leq K$ for some constant K, that y(t) is also bounded (use the triangle inequality and the inequality from exercise 1.9b). Hence, the system is stable.

c If u(t) is real, then the integral is real and so y(t) is real. Hence, the system is real.

 $\mathbf{d} \quad \text{The response is} \quad$

$$y(t) = \sin(\pi(t-t_0)) + \int_{t-1}^t \sin(\pi\tau) \, d\tau = \sin(\pi(t-t_0)) - 2(\cos \pi t)/\pi.$$

1.19

1.12

a If
$$u[n] = 0$$
 for $n < 0$, then $y[n]$ is also equal to 0 for $n < 0$ whenever $n_0 \ge 0$. Hence, the system is causal for $n_0 \ge 0$.

b It follows from the boundedness of u[n], so $|u[n]| \le K$ for some constant K and all n, that y[n] is also bounded (use the triangle inequality):

$$|y[n]| \le |u[n-n_0]| + \left|\sum_{l=n-2}^n u[l]\right| \le K + \sum_{l=n-2}^n |u[l]| \le K + \sum_{l=n-2}^n K,$$

 $\mathbf{2}$

https://ebookyab.ir/solution-manual-fourier-and-laplace-transforms-beerends-ter-morsche/ Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

Answers to selected exercises for chapter 1

which equals 4K. Hence, the system is stable.

c If u[n] is real, then $u[n - n_0]$ is real and also the sum in the expression for y[n] is real, hence, y[n] is real. This means that the system is real. **d** The response to $u[n] = \cos \pi n = (-1)^n$ is

$$y[n] = (-1)^{n-n_0} + \sum_{l=n-2}^{n} (-1)^l = (-1)^{n-n_0} + (-1)^n (1-1+1)$$

= $(-1)^n (1+(-1)^{n_0}).$