Answers to selected exercises for chapter 1

Apply $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$, then

$$
\begin{aligned}
& f_{1}(t)+f_{2}(t) \\
& \quad=A_{1} \cos \omega t \cos \phi_{1}-A_{1} \sin \omega t \sin \phi_{1}+A_{2} \cos \omega t \cos \phi_{2}-A_{2} \sin \omega t \sin \phi_{2} \\
& \quad=\left(A_{1} \cos \phi_{1}+A_{2} \cos \phi_{2}\right) \cos \omega t-\left(A_{1} \sin \phi_{1}+A_{2} \sin \phi_{2}\right) \sin \omega t \\
& \quad=C_{1} \cos \omega t-C_{2} \sin \omega t,
\end{aligned}
$$

where $C_{1}=A_{1} \cos \phi_{1}+A_{2} \cos \phi_{2}$ and $C_{2}=A_{1} \sin \phi_{1}+A_{2} \sin \phi_{2}$. Put $A=$ $\sqrt{C_{1}^{2}+C_{2}^{2}}$ and take ϕ such that $\cos \phi=C_{1} / A$ and $\sin \phi=C_{2} / A$ (this is possible since $\left.\left(C_{1} / A\right)^{2}+\left(C_{2} / A\right)^{2}=1\right)$. Now $f_{1}(t)+f_{2}(t)=A(\cos \omega t \cos \phi-$ $\sin \omega t \sin \phi)=A \cos (\omega t+\phi)$.

Put $c_{1}=A_{1} e^{i \phi_{1}}$ and $c_{2}=A_{2} e^{i \phi_{2}}$, then $f_{1}(t)+f_{2}(t)=\left(c_{1}+c_{2}\right) e^{i \omega t}$. Let $c=c_{1}+c_{2}$, then $f_{1}(t)+f_{2}(t)=c e^{i \omega t}$. The signal $f_{1}(t)+f_{2}(t)$ is again a time-harmonic signal with amplitude $|c|$ and initial phase $\arg c$.
The power P is given by

$$
\begin{aligned}
P & =\frac{\omega}{2 \pi} \int_{-\pi / \omega}^{\pi / \omega} A^{2} \cos ^{2}\left(\omega t+\phi_{0}\right) d t=\frac{A^{2} \omega}{4 \pi} \int_{-\pi / \omega}^{\pi / \omega}\left(1+\cos \left(2 \omega t+2 \phi_{0}\right)\right) d t \\
& =\frac{A^{2}}{2} .
\end{aligned}
$$

The energy-content is $E=\int_{0}^{\infty} e^{-2 t} d t=\frac{1}{2}$.
The power P is given by
$P=\frac{1}{4} \sum_{n=0}^{3}|\cos (n \pi / 2)|^{2}=\frac{1}{2}$.
The energy-content is $E=\sum_{n=0}^{\infty} e^{-2 n}$, which is a geometric series with sum $1 /\left(1-e^{-2}\right)$.
a If $u(t)$ is real, then the integral, and so $y(t)$, is also real.
b Since

$$
\left|\int u(\tau) d \tau\right| \leq \int|u(\tau)| d \tau
$$

it follows from the boundedness of $u(t)$, so $|u(\tau)| \leq K$ for some constant K, that $y(t)$ is also bounded.
c The linearity follows immediately from the linearity of integration. The time-invariance follows from the substitution $\xi=\tau-t_{0}$ in the integral $\int_{t-1}^{t} u\left(\tau-t_{0}\right) d \tau$ representing the response to $u\left(t-t_{0}\right)$.
d Calculating $\int_{t-1}^{t} \cos (\omega \tau) d \tau$ gives the following response: $(\sin (\omega t)-$ $\sin (\omega t-\omega)) / \omega=2 \sin (\omega / 2) \cos (\omega t-\omega / 2) / \omega$.
e Calculating $\int_{t-1}^{t} \sin (\omega \tau) d \tau$ gives the following response: $(-\cos (\omega t)+$ $\cos (\omega t-\omega)) / \omega=2 \sin (\omega / 2) \sin (\omega t-\omega / 2) / \omega$.
f From the response to $\cos (\omega t)$ in d it follows that the amplitude response is $|2 \sin (\omega / 2) / \omega|$.
g From the response to $\cos (\omega t)$ in d it follows that the phase response is $-\omega / 2$ if $2 \sin (\omega / 2) / \omega \geq 0$ and $-\omega / 2+\pi$ if $2 \sin (\omega / 2) / \omega<0$. From reponse to $e^{i \omega t}$ is first $H_{1}(\omega) e^{i \omega t}$ and then $H_{1}(\omega) H_{2}(\omega) e^{i \omega t}$.
b The amplitude response is $\left|H_{1}(\omega) H_{2}(\omega)\right|=A_{1}(\omega) A_{2}(\omega)$.
c The phase response is $\arg \left(H_{1}(\omega) H_{2}(\omega)\right)=\Phi_{1}(\omega)+\Phi_{2}(\omega)$.
a The amplitude response is $|1+i|\left|e^{-2 i \omega}\right|=\sqrt{2}$.
b The input $u[n]=1$ has frequency $\omega=0$, initial phase 0 and amplitude

1. Since $e^{i \omega n} \mapsto H\left(e^{i \omega}\right) e^{i \omega n}$, the response is $H\left(e^{0}\right) 1=1+i$ for all n.
c Since $u[n]=\left(e^{i \omega n}+e^{-i \omega n}\right) / 2$ we can use $e^{i \omega n} \mapsto H\left(e^{i \omega}\right) e^{i \omega n}$ to obtain that $y[n]=\left(H\left(e^{i \omega}\right) e^{i \omega n}+H\left(e^{-i \omega}\right) e^{-i \omega n}\right) / 2$, so $y[n]=(1+i) \cos (\omega(n-2))$. d Since $u[n]=(1+\cos 4 \omega n) / 2$, we can use the same method as in b and c to obtain $y[n]=(1+i)(1+\cos (4 \omega(n-2))) / 2$.
a The power is the integral of $f^{2}(t)$ over $[-\pi /|\omega|, \pi /|\omega|]$, times $|\omega| / 2 \pi$. Now $\cos ^{2}\left(\omega t+\phi_{0}\right)$ integrated over $[-\pi /|\omega|, \pi /|\omega|]$ equals $\pi /|\omega|$ and $\cos (\omega t) \cos \left(\omega t+\phi_{0}\right)$ integrated over $[-\pi /|\omega|, \pi /|\omega|]$ is $(\pi /|\omega|) \cos \phi_{0}$. Hence, the power equals $\left(A^{2}+2 A B \cos \left(\phi_{0}\right)+B^{2}\right) / 2$.
b The energy-content is $\int_{0}^{1} \sin ^{2}(\pi t) d t=1 / 2$.
The power is the integral of $|f(t)|^{2}$ over $[-\pi /|\omega|, \pi /|\omega|]$, times $|\omega| / 2 \pi$, which in this case equals $|c|^{2}$.
a The amplitude response is $|H(\omega)|=1 /\left(1+\omega^{2}\right)$. The phase response is $\arg H(\omega)=\omega$.
b The input has frequency $\omega=1$, so it follows from $e^{i \omega t} \mapsto H(\omega) e^{i \omega t}$ that the response is $H(1) i e^{i t}=i e^{i(t+1)} / 2$.
a The signal is not periodic since $\sin (2 N) \neq 0$ for all integer N.
b The frequency response $H\left(e^{i \omega}\right)$ equals $A\left(e^{i \omega}\right) e^{i \Phi e^{i \omega}}$, hence, we obtain that $H\left(e^{i \omega}\right)=e^{i \omega} /\left(1+\omega^{2}\right)$. The response to $u[n]=\left(e^{2 i n}-e^{-2 i n}\right) / 2 i$ is then $y[n]=\left(e^{2 i(n+1)}-e^{-2 i(n+1)}\right) /(10 i)$, so $y[n]=(\sin (2 n+2)) / 5$. The amplitude is thus $1 / 5$ and the initial phase $2-\pi / 2$.
a If $u(t)=0$ for $t<0$, then the integral occurring in $y(t)$ is equal to 0 for $t<0$. For $t_{0} \geq 0$ the expression $u\left(t-t_{0}\right)$ is also causal. Hence, the system is causal for $t_{0} \geq 0$.
b It follows from the boundedness of $u(t)$, so $|u(\tau)| \leq K$ for some constant K, that $y(t)$ is also bounded (use the triangle inequality and the inequality from exercise 1.9 b). Hence, the system is stable.
c If $u(t)$ is real, then the integral is real and so $y(t)$ is real. Hence, the system is real.
d The response is
$y(t)=\sin \left(\pi\left(t-t_{0}\right)\right)+\int_{t-1}^{t} \sin (\pi \tau) d \tau=\sin \left(\pi\left(t-t_{0}\right)\right)-2(\cos \pi t) / \pi$.
a If $u[n]=0$ for $n<0$, then $y[n]$ is also equal to 0 for $n<0$ whenever $n_{0} \geq 0$. Hence, the system is causal for $n_{0} \geq 0$.
b It follows from the boundedness of $u[n]$, so $|u[n]| \leq K$ for some constant K and all n, that $y[n]$ is also bounded (use the triangle inequality):
$|y[n]| \leq\left|u\left[n-n_{0}\right]\right|+\left|\sum_{l=n-2}^{n} u[l]\right| \leq K+\sum_{l=n-2}^{n}|u[l]| \leq K+\sum_{l=n-2}^{n} K$,
which equals $4 K$. Hence, the system is stable.
c If $u[n]$ is real, then $u\left[n-n_{0}\right.$] is real and also the sum in the expression for $y[n]$ is real, hence, $y[n]$ is real. This means that the system is real.
$\mathbf{d} \quad$ The response to $u[n]=\cos \pi n=(-1)^{n}$ is

$$
\begin{aligned}
y[n] & =(-1)^{n-n_{0}}+\sum_{l=n-2}^{n}(-1)^{l}=(-1)^{n-n_{0}}+(-1)^{n}(1-1+1) \\
& =(-1)^{n}\left(1+(-1)^{n_{0}}\right)
\end{aligned}
$$

