Chapter 2

2.1 We wish to fabricate a planar waveguide in GaAs for light of wavelength $\lambda_{0}=1.1 \mu \mathrm{~m}$ that will operate in the single (fundamental) mode. If we assume a planar waveguide like that of Fig. 2.1 with the condition $n_{2}-n_{1} \gg n_{2}-n_{3}$, what range of values can $n_{2}-n_{3}$ have if $n_{2}=3.4$ and the thickness of the waveguiding layer $t=3 \mu \mathrm{~m}$?

Solution. The cutoff condition is

$$
\Delta n=n_{2}-n_{3} \leq \frac{(2 M+1)^{2}}{32 n_{2}}\left(\frac{\lambda_{0}}{t}\right)^{2} \quad M=0,1,2, \ldots .
$$

Hence for fundamental mode $(M=0)$ propagation only we need

$$
\begin{aligned}
& \frac{1}{32 n_{2}}\left(\frac{\lambda_{0}}{t}\right)^{2} \leq n_{2}-n_{3}<\frac{9}{32 n_{2}}\left(\frac{\lambda_{0}}{t}\right)^{2} \\
& \frac{1}{32 \times 3.4}\left(\frac{1.15}{3}\right)^{2} \leq n_{2}-n_{3}<\frac{9}{32 \times 3.4}\left(\frac{1.15}{3}\right)^{2} \\
& 0.00135 \leq n_{2}-n_{3} \ll 0.0122 .
\end{aligned}
$$

2.2 Repeat Problem 2.1 for the case $\lambda_{0}=1.06 \mu \mathrm{~m}$, all other parameters remaining unchanged.

Solution.

$$
\begin{aligned}
& \frac{1}{32 \times 3.4}\left(\frac{1.06}{3}\right)^{2} \leq n_{2}-n_{3}<\frac{9}{32 \times 3.4}\left(\frac{1.06}{3}\right)^{2} \\
& 0.00115 \leq n_{2}-n_{3}<0.00103
\end{aligned}
$$

2.3 Repeat Problems 2.1 and 2.2 for a waveguide of thickness $t=6 \mu \mathrm{~m}$.

Solution.

$$
\begin{aligned}
& \frac{1}{32 \times 3.4}\left(\frac{1.15}{6}\right)^{2} \leq n_{2}-n_{3}<\frac{9}{32 \times 3.4}\left(\frac{1.06}{3}\right)^{2} \\
& 0.000338 \leq n_{2}-n_{3}<0.00304 \\
& \frac{1}{32 \times 3.4}\left(\frac{1.06}{6}\right)^{2} \leq n_{2}-n_{3}<\frac{9}{32 \times 3.4}\left(\frac{1.06}{6}\right)^{2} \\
& 0.000287 \leq n_{2}-n_{3}<0.00258
\end{aligned}
$$

Note how small the required Δn are in all the cases calculated and also note the strong dependence on wavelength and on waveguide thickness.
2.4 In a planar waveguide like that of Fig. 2.8 with $n_{2}=2.0, n_{3}=1.6$, and $n_{1}=1$, what is the angle of propagation of the lowest order mode $\left(\theta_{0}\right)$ when cutoff occurs? Is this a maximum or a minimum angle for θ_{0} ?

Solution. At cutoff we know

$$
\cos \theta_{m}=\frac{n_{3}}{n_{2}}
$$

or

$$
\begin{aligned}
\cos \theta_{0} & =\frac{1.6}{2.0} \\
\theta_{0} & =36.87^{\circ} .
\end{aligned}
$$

We can tell that this is a maximum angle because

$$
\cos \theta_{\mathrm{m}}=\frac{\beta_{\mathrm{m}}}{k n_{2}},
$$

and from physical optics we know the condition required for waveguiding is

$$
\beta_{\mathrm{m}} \geq k n_{3} .
$$

2.5 Sketch the three lowest order modes in a planar waveguide like that of Fig. 2.8 with $n_{1}=n_{3}<n_{2}$.

Solution.

2.6 A mode is propagating in a planar waveguide as shown with $\beta_{\mathrm{m}}=0.8 \mathrm{kn} n_{2}$. How many reflections at the $n_{1}-n_{2}$ interface does the ray experience in traveling a distance of 1 cm in the z direction?

4

Solution.

$$
\begin{aligned}
\frac{\beta_{\mathrm{m}}}{k n_{2}} & =0.8=\cos \theta_{\mathrm{m}} \\
\theta_{\mathrm{m}} & =36.87^{\circ}
\end{aligned}
$$

tt

from simple geometric considerations the number of bounces from each surface in length L is given by

$$
\text { \# of bounces }=\frac{L}{2 s}=\frac{L}{2 t \cot \theta_{\mathrm{m}}}
$$

for $L=1 \mathrm{~cm}$ and $t=3 \mu \mathrm{~m}$

$$
\# \text { of bounces }=\frac{1}{2 \times 3 \times 10^{-4} \times \cot 36.87^{\circ}}=1250 .
$$

2.7 Show that the Goos-Hänchen phase shift goes to zero as the cutoff angle is approached for a waveguided optical mode.
Solution. At cutoff for the $n_{2}-n_{3}$ interface,

$$
\phi_{2}=\theta_{\mathrm{c}}=\sin ^{-1}\left(n_{3} / n_{2}\right) .
$$

The Goos-Hänchen shift for a TE wave is given by (2.1.21) as

$$
\tan \phi_{23}=\left(n_{2}^{2} \sin ^{2} \phi_{2}-n_{3}^{2}\right)^{1 / 2} /\left(n_{2} \cos \phi_{2}\right),
$$

substituting $\phi_{2}=\theta_{\mathrm{c}}=\sin ^{-1}\left(n_{3} / n_{2}\right)$

$$
\tan \phi_{23}=\left(n_{2}^{2} \cdot\left(n_{3} / n_{2}\right)^{2}-n_{3}^{2}\right)^{1 / 2} / n_{2} \cos \left(\sin ^{-1}\left[n_{3} / n_{2}\right]\right)=0 .
$$

The same result for TM waves can be demonstrated by substituting into equation (2.1.22)
2.8 Calculate the Goos-Hänchen shifts for a TE mode guided with $\beta=1.85 k$ in a guide like that of Fig. 2.8, with $n_{1}=1.0, n_{2}=2.0, n_{3}=1.7$.

Solution.

$$
\begin{aligned}
\sin \phi_{2} & =\frac{\beta}{k n_{2}}=\frac{1.85 k}{k \times 2}=0.925 \\
\therefore \phi_{2} & =67.7^{\circ} \\
\tan \phi_{23} & =\frac{\left(n_{2}^{2} \sin ^{2} \phi_{2}-n_{3}^{2}\right)^{\frac{1}{2}}}{n_{2} \cos \phi_{2}} \\
& =\frac{\left(4(0.925)^{2}-(1.7)^{2}\right)^{1 / 2}}{2 \cos 67.7^{\circ}} \\
& =\frac{0.729}{2 \cos 67.7^{\circ}}=0.961 \\
\phi_{23} & =43.9^{\circ} \\
\tan \phi_{21} & =\frac{\left(n_{2}^{2} \sin ^{2} \phi_{2}-n_{1}^{2}\right)^{1 / 2}}{n_{2} \cos \phi_{2}} \\
& =\frac{\left(4(0.925)^{2}-1\right)^{1 / 2}}{2 \cos 67.7^{\circ}} \\
& =\frac{1.556}{2 \cos 67.7^{\circ}}=2.05 \\
\phi_{21} & =64.0^{\circ}
\end{aligned}
$$

The Goos-Hänchen Shifts are

$$
\begin{aligned}
& -2 \phi_{23}=-87.8^{\circ} \\
& -2 \phi_{21}=-128^{\circ} .
\end{aligned}
$$

2.9 Show by drawing the vectorial relationship between the propagation constants (as in Fig. 2.9) How $\beta, k n_{2}$ and h change in relative magnitude and angle as one goes from the lowest-order mode in a waveguide progressively to higher-order modes.

6

Solution.

$$
\begin{aligned}
& k n_{2}=\text { constant } \\
& \text { as mode } \uparrow, \theta_{\mathrm{m}} \uparrow \\
& \cos \theta_{\mathrm{m}} \downarrow \\
& \beta_{\mathrm{m}}=k n_{2} \cos \theta_{\mathrm{m}} \\
& \therefore \text { as mode } \uparrow, \beta_{\mathrm{m}} \downarrow \\
& h=\left(n_{2}^{2} k^{2}-\beta^{2}\right)^{1 / 2} \\
& \therefore \text { as mode } \uparrow, h \uparrow
\end{aligned}
$$

See below

> (e)
> (d)
> (c)
> (b)
> $\xrightarrow[\boldsymbol{B}]{\mathrm{k}_{0} n_{2} /{ }^{2}} h$
> $\xrightarrow[\beta]{k_{0} n_{2}} \rightarrow$
> $\xrightarrow[\beta]{k_{0} n_{2}} h$
> $\xrightarrow[\beta]{k_{0} n_{2}} h$

