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SOLUTIONS TO EXERCISES

CHAPTER 1
1.2 Ordered field axioms.

1.2.0. a) False. Let a =2/3,b=1,c= -2, and d = —1.

b) False. Let a = —4, b= —1, and ¢ = 2.

¢) True. Sincea<bandb<a+c¢,la—b=b—a<a+c—a=c

d) True. No a € R satisfies a < b — ¢ for all £ > 0, so the inequality is vacuously satisfied. If you want a more
constructive proof, if b <0 thena <b—e<0+4+0=0. If b >0, then fore =b, a <b—¢=0.

1.2.1. a) If a < b then a + ¢ < b+ ¢ by the Additive Property. If a = b then a + ¢ = b+ ¢ since + is a function.
Thus a + ¢ < b+ ¢ holds for all a < b.

b) If ¢ = 0 then ac = 0 = be so we may suppose ¢ > 0. If a < b then ac < be by the Multiplicative Property. If
a = b then ac = be since - is a function. Thus ac < be holds for all a < b and ¢ > 0.

1.2.2. a) Suppose 0 < a < b and 0 < ¢ < d. Multiplying the first inequality by ¢ and the second by b, we have
0 < ac < bc and be < bd. Hence by the Transitive Property, ac < bd.

b) Suppose 0 < a < b. By (7), 0 < a® < b?. If \/a > v/b then a = (v/a)? > (v/b)? = b, a contradiction.

¢) If 1/a < 1/b, then the Multiplicative Property implies b = ab(1/a) < ab(1/b) = a, a contradiction. If 1/b <0
then b = b?(1/b) < 0 a contradiction.

d) To show these statements may not hold when a < 0, let a = =2, b= —1, ¢ =2 and d = 5. Then a < b and
¢ < d but ac = —4 is not less than bd = —5, a® = 4 is not less than b*> = 1, and 1/a = —1/2 is not less than
1/b=—1.

1.2.3. a) By definition,
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and
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b) By Definition 1.1, if a > 0 then a™ = (a+a)/2 = a and if a < 0 then a™ = (—a+a)/2 = 0. Similarly, a= =0
fa>0anda” = —aifa<0.

1.2.4. a) [4x — 2| < 22 if and only if —22 < 42 — 2 < 22 if and only if —5 < z < 6.

b) |1 — 22 <7 if and only if =7 <1 — 22 < 7 if and only if —8 < —2z < 6 if and only if —3 < z < 4.

¢) |z* — 2] < 2% if and only if —2° < 2% — z < 2% if and only if —z < 0 and 22° — z > 0. The first inequality
is equivalent to & > 0. Since 22° — 2 = 2(22% — 1) implies that x = 0, :I:l\/g, the second inequality is equivalent
to 71/\/§< z<0orz> 1/\/5. Therefore, the solution is (1/\/5, 00).

d) We cannot multiply by the denominator z — 2 unless we consider its sign.

Case 1: © — 2 > 0. Then 2z < 4(z — 2) so 8 < 2z and z > 4.

Case 2: £ — 2 < 0. Then by the Second Multiplicative Property, 2z > 4(z — 2) so 8 > 2z and x < 4. Thus,
the solution is (—o0, 2) U (4, 00).

e) Case I: 3z — 3 > 0. Cross multiplying, we obtain 3z2* < 3z?— 3, i.e., this case is empty.

Case 2: 3z — 3 < 0. Then by the Second Multiplicative Property, 322 > 3z° — 3, i.e., 0 > —3. Thus, the
solution is (—1, 1).

1.2.5. a) Suppose @ > 2. Thena—1>1s01 < +a—1<a—1Dby (6). Therefore, 2 <b=1++a—1
1+(a—1)=a.

b) Suppose 2 <a < 3. Then0 <a—2<1s00<a—2<+/a—2<1by (6). Therefore, 0 < a < 24++/a—2=0b.
c¢) Suppose 0 < a < 1. Then 0> —a > —1,80 0 < 1—a < 1. Hence /1 —a is real and by (6), 1 —a < /1 — a.
Therefore, b=1—-+y1—-a<1—(1—a)=a.

d) Suppose 3<a <5. Thenl<a—2<3s01l<+va—2<a—2by (6). Therefore, 3<2++a—2=>b<a.
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1.2.6. a+b—2Vab = (y/a —vb)?> > 0 for all a,b € [0,00). Thus 2vab < a + b and G(a,b) < A(a,b). On
the other hand, since 0 < a < b we have A(a,b) = (a +b)/2 < 2b/2 = b and G(a,b) = Vab > Va? = a. Finally,
A(a,b) = G(a,b) if and only if 2v/ab = a + b if and only if (v/a — v/b)? = 0 if and only if \/a = v/b if and only if
a="b.

1.2.7. a) Since |z + 1] <|z| + 1, |2| <4 implies 22— 1] = |z — 1||z + 1| < 5|z — 1].

b) Since |z + 6] < |2| + 6, |2 <1 implies |2’ + bz — 6| = |z + 6|l — 1| < 7]z — 1].

¢) Since |z + 5| < |2] + 5, =3 < 2 < 3 implies |2*> + 3z — 10| = |z + 5||z — 2| < 8|z — 2|.

d) Since the minimum of 224 22 — 8 on (=2, 0) is =9, —2 < 2 < 0 implies |z* + 32% — 62 — 8| = |z + 1||a?
+ 22— 8 <9z + 1| < 9.5z + 1.

1.2.8. a) Since (1 — 2n)/(1 — 4n?) = 1/(1 4 2n), the inequality is equivalent to 1/(1+2n) < 0.02 = 1/50.
Since 1 + 2n > 0 for all n € N, it follows that 1 + 2n > 50, i.e., n > 25.

b) By factoring, we see that the inequality is equivalent to (n — 1)/n < 5/2, i.e., 2(n — 1) < 5n. Thus
—2/3 < n, i.e., the solution is any n € N.

¢) The inequality is equivalent to n?+ 4 > 1000. Thusn > \/@ ~ 31.56, i.e., n > 32.

1.2.9. a) mn~ ' 4 pg! = mggin"! +pginn~t = (mg + pn)n~i¢t. But n !¢ 'ng = 1 and uniqueness
—1,-1 1

of multiplicative inverses implies (ng)~! = n=1g=!. Therefore, mn=! + pg=!' = (mq + pn)(ng)~'. Similarly,
mn~t(pg™t) = mpn~l¢~! = mp(ng)~!. By what we just proved and (2),

m = —m m—m 0
S = =0.
n n n n

Therefore, by the uniqueness of additive inverses, —(m/n) = (—=m)/n. Similarly, (m/n)(n/m) = (mn)/(mn) =
mn(mn)~! =1, so (m/n)~! = n/m by the uniqueness of multiplicative inverses.

b) Any subset of R which contains 0 and 1 will satisfy the Associative and Commutative Properties, the
Distributive Law, and have an additive identity 0 and a multiplicative identity 1. By part a), Q satisfies the
Closure Properties, has additive inverses, and every nonzero ¢ € Q has a multiplicative inverse. Therefore, Q
satisfies Postulate 1.

c)lfreQ,zeR\Qbut ¢g:=r+x € Q, then z = g —r € Q, a contradiction. Similarly, if rz € Q and r # 0,
then x € Q, a contradiction. However, the product of any irrational with 0 is a rational.

d) By the First Multiplicative Property, mn~—' < pg~? if and only if mq = mn~'qn < pg~'ng = np.

1.2.10. 0 < (cb — ad)? = ¢*b? — 2abed + a?d? implies 2abed < ¢?b? + a?d?. Adding a?b? + c*d? to both sides,
we conclude that (ab + cd)? < (a? + c2)(b* + d?).

1.2.11. Let P :=R™.

a) Let € R. By the Trichotomy Property, either 2 > 0, —z > 0, or z = 0. Thus P satisfies i). If 2 > 0 and
y > 0, then by the Additive Property, x4+ > 0 and by the First Multiplicative Property, zy > 0. Thus P satisfies
ii).

b) To prove the Trichotomy Property, suppose a,b € R. By i), either a —b € P, b—a = —(a —b) € P, or
a — b= 0. Thus either a > b, b > a, or a = b.

To prove the Transitive Property, suppose a < b and b < ¢. Then b — a,c —b € P and it follows from ii) that
c—a=b—a+c—-beP,ie,c>a.

Since b —a = (b+ ¢) — (a + ¢), it is clear that the Additive Property holds.

Finally, suppose a < b, i.e., b—a € P. If ¢ > 0 then ¢ € P and it follows from ii) that bc — ac = (b — a)c € P,
ie., be > ac. If ¢ < 0 then —c € P, so ac —bec = (b—a)(—c) € P, i.e., ac > bc.

1.3 The Completeness Axiom.

1.3.0. a) True. If AN B = (), then sup(A N B) := —oco and there is nothing to prove. If AN B # (), then use
the Monotone Property.

b) True. If x € A, then x < sup A. Since € > 0, we have ex < esup A, so the latter is an upper bound of B. It
follows that sup B < esup A. On the other hand, if € A, then ex € B, so ex < sup B, i.e., sup B/¢ is an upper
bound for A. It follows that sup A < sup B/e.

¢) True. If z € A and y € B, then « + y < sup A + sup B, so sup(A + B) < sup A + sup B. If this inequality is
strict, then sup(A + B) —sup B < sup A, and it follows from the Approximation Property that there is an ag € A
such that sup(A+ B) —sup B < ag. This implies that sup(A+ B) —ag < sup B, so by the Approximation Property
again, there is a by € B such that sup(A + B) —ag < by. We conclude that sup(A + B) < ag + bo, a contradiction.
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d) False. Let A =B =10,1]. Then A — B =[-1,1] so sup(A—B)=1#0=sup A —sup B.
1.3.1. a) Since 22 + 3z — 10 = 0 implies x = —5, 2, inf F = —5, sup F = 2.

b) Since 22+ 3z — 10 > 2? implies = > 10/3, inf F = 10/3, sup E = 10.

¢) Since 2p? — 4¢* > 0 implies p/q >+/2, inf E =~/2, sup E = 2.

d) Since (—1)"/n = —1/n when n is odd and 1/n when n is even, inf E = —1, sup E = 1/2.
e) Since 1/n + (—1)"/n = 0 when n is odd and 2/n when n is even, inf E = 0, sup F = 1.
f) Since 5 — (—4)"/2?" = 6 when n is odd and 4 when n is even, inf E = 4, sup F = 6.

1.3.2. Since a — 1/n < a+ 1/n, choose r, € Q such that a —1/n <r, <a+1/n,ie., |a—r,| <1/n.

1.3.3. a < b implies a — v/2 < b — /2. Choose r € Q such that a — v2 <r < b—+/2. Then a < r + 2 < b.
By Exercise 1.2.9¢, r + V/2 is irrational. Thus set E=r+ V2.

1.3.4. If m is a lower bound of F then so is any m < m. If m and m are both infima of E then m < m and
m <m,ie, m=m.

1.3.5. Suppose that E is a bounded, nonempty subset of Z. Since —F is a bounded, nonempty subset of Z, it
has a supremum by the Completeness Axiom, and that supremum belongs to —F by Theorem 1.15. Hence by the
Reflection Principle, inf F = —sup(—FE) € —(—E) =FE.

1.3.6. a) Let € > 0 and m = inf E. Since m+¢ is not a lower bound of E, there is an a € E such that m+¢€ > a.
Thus m + € > a > m as required.

b) By Theorem 1.14, there is an a € F such that sup(—F) — ¢ < —a < sup(—F). Hence by the Second
Multiplicative Property and Theorem 1.20, inf E + € = —(sup(—FE) —€) > a > —sup(—F) = inf E.

1.3.7. a) Let = be an upper bound of F and x € E. If M is any upper bound of E then M > x. Hence by
definition, z is the supremum of E.

b) The correct statement is: If x is a lower bound of F and z € F then x = inf E.

PROOF. —z is an upper bound of —F and —x € —E so —x = sup(—£). Thus x = —sup(—F) = inf E.

c) If E is the set of points x,, such that z,, = 1 — 1/n for odd n and z, = 1/n for even n, then sup £ = 1,
inf £ = 0, but neither 0 nor 1 belong to E.

1.3.8. Since A C E, any upper bound of E is an upper bound of A. Since A is nonempty, it follows from
the Completeness Axiom that A has a supremum. Similarly, B has a supremum. Moreover, by the Monotone
Property, sup A,sup B < sup F.

Set M := max{sup A4, sup B} and observe that M is an upper bound of both A and B. If M < sup E, then
there is an © € F such that M < x <sup E. But z € E implies x € A or x € B. Thus M is not an upper bound
for one of the sets A or B, a contradiction.

1.8.9. By induction, 2" > n. Hence by the Archimedean Principle, there is an n € N such that 2" > 1/(b—a).
Let F := {k € N : 2"b < k}. By the Archimedean Principle, F is nonempty. Hence let mg be the least element in
E and set ¢ = (mg — 1)/2™. Since b > 0, mo > 1. Since my is least in F, it follows that mg — 1 < 2"b, i.e., ¢ < b.
On the other hand, mg € E implies 2"b < my, so

a=b—(b—a)< — —— = =q

1.3.10. Since |z,| < M, the set E,, = {&n,Zpt1,...} is bounded for each n € N. Thus s, := sup E,, exists
and is finite by the Completeness Axiom. Moreover, since E,+1 C E,, it follows from the Monotone Property,
Sp > Sptq for each n € N. Thus s1 > 59 > ...

By the Reflection Principle, it follows that ¢; <o < ---.

Or, if you prefer a more direct approach, o, := sup{—2n, —Zn41,... } satisfies o1 > o9 > .... Since t, = —0oy,
for n € N, it follows from the Second Multiplicative Property that t; <ty <....

1.8.11. Let E={n€Z:n <a}. Ilf a >0, then 0 € E. If a < 0, then by the Archimedean Principle, there
is an m € N such that m > —a, i.e., n :== —m € E. Thus FE is nonempty. Since E is bounded above (by a), it
follows from the Completeness Axiom and Theorem 1.15 that ny = sup E exists and belongs to E.

Set k = ng + 1. Since k > sup F, k cannot belong to F, i.e., a < k. On the other hand, since ng € E and
b—a>1,

k=ny+1<a+1l<a+(b—a)=0.

We conclude that a < k£ < b.
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1.4 Mathematical Induction.

1.4.0. a) False. If a = —b =1 and n = 2, then (a + b)" = 0 is NOT greater than b* = 1.

b) False. If a = —3, b =1, and n = 2, then (a + b)™ = 4 is not less than or equal to b = 1.

c) True. If n is even, then n — k and k are either both odd or both even. If they’re both odd, then a”~*b* is the
product of two negative numbers, hence positive. If they’re both even, then a” *b* is the product of two positive
numbers, hence positive. Thus by the Binomial Formula,

a -+ no_ n an—kbk = q" +na"_1b+ n an—kbk = q" + nan—1b+ C.
b k k
k=0 k=2

Since C'is a sum of positive numbers, the promised inequality follows at once.
d) True. By the Binomial Formula,

1 (1 a-2\" &\ 1(@-2"F (n\(a—2)"F
= (ot 5) =2 (1) ar srmer = 2 (1)

k=0

1.4.1. a) By hypothesis, 21 > 2. Suppose z,, > 2. Then by Exercise 1.2.5a, 2 < z,,+1 < &,. Thus by induction,
2 < Tpy1 < x, for all m € N.

b) By hypothesis, 2 < x; < 3. Suppose 2 < z,, < 3. Then by Exercise 1.2.5b, 0 < z,, < x,41. Thus by
induction, 0 < x,, < x,4+1 for all n € N.

¢) By hypothesis, 0 < 21 < 1. Suppose 0 < z,, < 1. Then by Exercise 1.2.5¢, 0 < 2,41 < x,. Thus by induction
this inequality holds for all n € IN.

d) By hypothesis, 3 < x; < 5. Suppose 3 < x,, < 5. Then by Exercise 1.2.5d, 3 < z,41 < z,. Thus by
induction this inequality holds for all n € N.

1.4.2. ) 0=(1—-1)" =3, ()1 (=D =37 (1) (=D*.
b) (a+b)" =a" +na""tb+---+b" > a" + na""1bh.
c) By b), (1+1/n)" > 1" +nl1""Y(1/n) = 2.

d) 2" = (1+1)" =37, (1) so X7, () =2" — 1. On the other hand Y"1~ 2* = 2" — 1 by induction.

1.4.3. a) This inequality holds for n = 3. If it holds for some n > 3 then
2n+ 1) +1=2n+1+2<2"+2< 2" 42" =2"1
b) The inequality holds for n = 1. If it holds for n then
n+1<2"+1<2" +n<2" 42" =2
¢) Now n? < 2" + 1 holds for n = 1,2, and 3. If it holds for some n > 3 then by a),
(n+1)?=n?+2n+1<2m 42" =2" <onfl 11,
d) We claim that 3n? +3n +1 < 2-3" for n = 3,4,.... This inequality holds for n = 3. Suppose it holds for

some n. Then
3n+1)2+3n+1)+1=3n+3n+1+6n+6<2-3"+6(n+1).

Similarly, induction can be used to establish 6(n + 1) < 4-3™ for n > 1. (It holds for n = 1, and if it holds for n
then 6(n+2) =6(n+1)+6<4-3"+6 <4-3"+8-3" =4-3"") Therefore,

3n+1)?2+3n+1)+1<2-3"+6(n+1)<2-3"+4.3"=2.3""

Thus the claim holds for all n > 3.
Now n? < 3" holds by inspection for n = 1,2, 3. Suppose it holds for some n > 3. Then

(n+1)=n%+3n*+3n+1<3"+2.3" =3"1
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1.4.4. a) The formula holds for n = 1. If it holds for n then

n+1

1 1 2
S k=D s (R = DTS
2 2 2
k=1
b) The formula holds for n = 1. If it holds for n then

n+1
§ e D@D e Ly (D )
k=1 6 6 .

Sa-1 1 a-1_ 1
Z ak 717a7n+an+1717an+1'

d) The formula holds for n = 1. If it holds for n then

n+1

an? — 1 o+ 1
S (2k—1)2:%+(2n+1)2: "; (202 + 51+ 3)
k=1
o + 1 1)(4n?
_ n3+ (2n+3)(n+1):(n+ )( n3+8n+3)

(n+1)4(n+1)2-1)
3 .

1.4.5. 0 < @™ < b™ holds for n = 1. If it holds for n then by (7), 0 < a"*! < s+
By convention, Vb >0. If Va < /b is false, then Ya > Vb > 0. Taking the nth power of this inequality, we
obtain a = ({/a)™ > (¥/b)" = b, a contradiction.

1.4.6. The result is true for n = 1. Suppose it’s true for some odd number > 1, i.e., 2271 4 327=L = 5/ for
some ¢,n € N. Then
22n+1 + 32n+1 _ 4 3 22’)@71 + 9 . 327171 _ 4 . 5£+ 5 ) 32n71

is evidently divisible by 5. Thus the result is true by induction.

1.4.7. We first prove that 2n! +2 < (n+ 1)! for n = 2,3,.... It’s true for n = 2. Suppose that it’s true for
some n > 2. Then by the inductive hypothesis,

2+ 1) 4+2=2n+1)n!+2=2n'+242n-n! < (n+ 1)+ 2n-nl.
But 2 < n+ 1 so we continue the inequality above by
2+ D+2<(n+Dl4+n-(n+ D) =(n+2) - (n+ 1) =(n+2)!

as required.
To prove that 2 < n!+ 2, notice first that it’s true for n = 1. If it’s true for some n > 1, then by the inequality
already proved,
2t =92.9" <2(n!+2) =201 +2+2< (n+ 1) +2

as required.

1.4.8. If n =1 or n = 2, the result is trivial. If n > 3, then by the Binomial Formula,

2"—(1+1)"—§:(Z>><§>—”(”—lg(”—2).

k=0

1.4.9. a) If m = k2, then /m = k by definition. On the other hand, if m is not a perfect square, then by
Remark 1.28, \/m is irrational. In particular, it cannot be rational.
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b) If vVn + 3+ /1 € Q then n+3+2v/n + 3/n+n = (v/n +3+/n)? € Q. Since Q is closed under subtraction
and division, it follows that v/n2 + 3n € Q. In particular, n? 4 3n = m? for some m € N. Now n? + 3n is a perfect
square when n = 1 but if n > 1 then

(n+1=n’+2n+1<n’*+2n+n=n+3n=<n’+4n+4=(n+2)>~

Therefore, the original expression is rational if and only if n = 1.
c) By repeating the steps in b), we see that the original expression is rational if and only if n(n+7) = n?>+7n =m
for some m € N. If n > 9 then

2

(n+32=n>+6n+9<n®>+Tn<n®+8n+16=(n+4)%

Thus the original expression cannot be rational when n > 9. On the other hand, it is easy to check that n? 4+ 7n is
not a perfect square for n = 1,2,...,8 but is a perfect square, namely 144 = 122, when n = 9. Thus the original
expression is rational if and only if n = 9.

1.4.10. The result holds for n = 0 since ¢g — bg = 1 and a% + bg = c%. Suppose that ¢,_1 — b,—1 = 1 and
a?_;+b2_, =c2_, hold for some n > 0. By definition, ¢, — b, = ¢,,_1 —bn_1 = 1, so by induction, this difference
is always 1. Moreover, by the Binomial Formula, the inductive hypothesis, and what we just proved,

a2 + b2 = (an_1+2)*+ (2an_1 +bp_1 +2)?
=a’ | +da, 1 +4+ (2a,1 +2)* + 20, 1(2a, 1 +2) + 02,
=c2 4+ 2(an1+2)+ (20,1 +2)* +2(ch1 — 1)(2a,_1 +2)
2 1+ (2ap-1+2)* + 2cp-1(2an-1 + 2)

=c
= (2an-1+co1 +2)2=c2.

1.5 Inverse Functions and Images.

1.5.0. a) False. Since (sinz)’ = cosz is negative on [r/2,3m/2], f is 1-1 there, but the domain of arcsinz is
[—7/2,7/2]. Thus here, f~!(z) = arcsin(r — ).
b) True. By elementary set algebra and Theorem 1.37,

(fFHANFABYUHC)=fFHANB)UF1C) D f 1 (AN B) #0.

¢) False. If X =[0,2], A=10,1] and B = {1}, then B\ A =0 but (A\ B)°=1[0,1)° = [1,2].
d) False. Let f(z) =2+ 1for —1 <2 <0and f(z) =2z —1for 0 <z < 1. Then f takes [—1,1] onto [—1,1]
and f(0) = 1, but f~1(£(0)) = f~'(1) = {0, 1}.
1.5.1. a) fis 1-1 since f(x) = 2 > 0 for z € R. If y = 22 + 4, then x = (y — 4)/2. Therefore f~! (z) =
(z — 4)/2. By looking at the graph, we see that f{E) = R.
b) fis 1-1 since f((z) = e V/*/z*> > 0 for x € (0,00). If y = e7V/*, then log y = —1/xz, i.e., z = —1/log y.
Therefore, f~!(x) = (—1)/log . By looking at the graph, we see that f(E) = (0, 1).
¢) fis 1-1 on (7/2, 37/2) because f'(z) = 2 sec’x > 0 there. The inverse is f~!(x) = arctan (x/2). By looking
at the graph, we see that f(E) = (—o0, 00).
d) Since f'(x) = 2x— 4 <0 for x < =3, f'is 1-1 on (—o0, —3]. Since y = x>—4x + 1 is a quadratic in x, we have
T = (4 + /16 + 4(y - 1)) /2=2%4y+ 3. But x is negative on (—oco, —3|, so we must use the negative sign.
Hence f! (x) =2 —+/z + 3. By looking at the graph, we see that f{E) = [22, 00).
e) By definition,
r—1 <=2
flo)=1{3z+3 —2<z<-1
z+1 z>—1.

Thus fis strictly increasing, hence 1-1, and

z+1 <=3
' (z)=4(z-3)/3 —3<z<0
z—1 x> 0.

ie., f(x) = (Jx|-|x + 3] + 3x)/3. By looking at the graph, we see that f{E) = (-0, c0).
6
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f) Since f'(x) = (=x* — 2x 4+ 1) /(x*+ 1)? is never zero on [-1, 0], fis 1-1 on [-1, 0]. By the quadratic formula,

y = f(x) implies z = (1 +.,/1— 4y<y — 1))/2y. Since x € [—1, 0] we must take the minus sign. Hence

fl(w)ZI(l_m)/% v=0

1 z=0.
By looking at the graph, we see that f{E) = [0, 1].

1.5.2. a) fdecreases and f{—2) = 25, f(1) = —5. Therefore, f{E) = (=5, 25). Since f(z) = —2 implies z =
7/10 and f(z) = 1 implies = 4/10, we also have f!(E) = (4/10, 7/10).

b) The graph of fis a parabola whose absolute minimum is —2 at = 0 and whose maximum on (—1, 2]
is 2 at & = 2. Therefore, (E) = [-2, 2]. Since ftakes +2 to 2, f~'(F) = [-2, —1) U (1, 2].

¢) The graph of fis a parabola whose absolute maximum is 4 at z = 2. Since f(0) = 0, it follows that f(E)
= [0, 4]. Since 4z — 2?= 0 implies & = 0, 4, we also have f~'(F) = [0, 4].

d) The graph of 2> — 4z + 5 is a parabola whose minimum is 1 at = 2. Since log increases on (0, c0),
f(2) =log(1) = 0, and f(5) = log(10), it follows that f{E) = [0, log(10)]. Since 5 = log(z? — 4x + 5) implies

r=24+e” —1, we also have
F(E)=|2-Ve —I,Q)U(2,2+ ¢’ f1].

e) Since sin z is periodic with maximum 1 and minimum —1, f{F) = [—1, 1]. Since sin z is nonnegative
when 2km < x <(2k + 1)7 for some k € Z, it follows that

(B = [ka,(% +1) w]

ke

1.5.3. a) The minimum of z on [-1, 1] is —1 and the maximum of # + 1 on [-1, 1] is 2. Thus U _ [z, @
+1]=[-1, 2.

b) The maximum of z — 2 on [-2, 2] is 0 and the minimum is of z + 2 on [-2, 2] is 0. Thus N, , [z —
2, z+ 2] = {0}.

c¢) The maximum of 1/k for £ € N is 1. Thus U,_([0, 1/k) = [0, 1).

d) The maximum of 1/k for k € N is 1 and the minimum is of k + 1 for k € N is 2. Thus N,_[1/k, k + 1]
=1, 2].

e) The minimum of 1/k for k € Nis 0 and 1 € [1 — 1/k 1 + 1/A] for all k € N. Thus N, _[1 —1/k, 1 +
1/k = {1}.

f) The minimum of —% for k € N is —co and the maximum of  for £ € N is co. Thus U,_(—F, k) = (—o0, c0).

1.5.4. Suppose x belongs to the left side of (16), i.e., x € X and = ¢ NycaF,. By definition, z € X and
x ¢ E, for some o € A. Therefore, z € ES for some « € A, i.e., x belongs to the right side of (16). These steps
are reversible.

1.5.5. a) By definition, z € f~'(UyeaFys) if and only if f(z) € E, for some a € A if and only if z €
UaEAf_l(Ea)-

b) By definition, € f~!(NaeaEy) if and only if f(z) € E, for all a € A if and only if x € Npeaf H(EL).

¢) To show f(f~*(E)) = E, let + € E. Since E C f(X), choose a € X such that 2 = f(a). By definition,
a € fYE)sox= f(a) € f(fH(E)). Conversely, if z € f(f~*(E)), then z = f(a) for some a € f~}(FE). By
definition, this means x = f(a) and f(a) € E. In particular, z € E.

To show E C f~Y(f(E)), let x € E. Then f(z) € f(FE), so by definition, z € f~'(f(E)).

1.5.6. a) Let C' = [0,1] and B = [-1,0]. Then C'\ B = {0} and f(C) = f(B) = [0,1]. Thus f(C'\ B) = {0} #

0= f(C)\ f(B).
b) Let E = [0,1]. Then f(E) = [0,1] so f~ (f(E)) = [~1,1] # [0,1] = E.

1.5.7. a) implies b). By definition, f(A\ B) D f(A)\ f(B) holds whether f is 1-1 or not. To prove the reverse
inequality, suppose f is 1-1 and y € f(A\ B). Then y = f(a) for some a € A\ B. Since f is 1-1, a = f~({y}).
Thus y # f(b) for any b € B. In particular, y € f(A) \ f(B).

b) implies c). By definition, A C f~1(f(A)) holds whether f is 1-1 or not. Conversely, suppose = € f~1(f(4)).
Then f(z) € f(A) so f(z) = f(a) for some a € A. If © ¢ A, then it follows from b) that f(A) = f(A\ {z}) =
FAN f({z}), i.e, f(z) ¢ f(A), a contradiction.

¢) implies d). By Theorem 1.37, f(AN B) C f(A) N f(B). Conversely, suppose y € f(A) N f(B). Then
y = f(a) = f(b) for some a € Aand b € B. If y ¢ f(ANB) then a ¢ B and b ¢ A. Consequently,
~Y(f({a})) 2 {a,b} D {a}, which contradicts c).

d) implies a). If f is not 1-1 then there exist a,b € X such that a # b and y := f(a) = f(b). Hence by d),

{y} = f({a}) N f({b}) = 0, a contradiction. .
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1.6 Countable and uncountable sets.

1.6.0. a) False. The function f(z) = 2 for x € N and f(z) =1 for € R\ N takes R onto N, but R is not at
most countable.

b) False. The sets A,, := {% ck€Nand —2™ < k < 2™} are finite, hence at most countable. Since the dyadic
rationals are the union of the A,,’s as m ranges over N, they must be at most countable by Theorem 1.42ii.

c¢) True. If B were at most countable, then its subset f(A) would be at most countable by Theorem 1.41, i.e.,
there is a function g which takes f(A) onto N. Hence by Exercise 1.6.5a, g o f takes A onto N. It follows from
Lemma 1.40 that A is at most countable, a contradiction.

d) False, beguiling as it seems! Let E, = {0,1,...,9} and define f on E; X Ey X --- by taking each point
(21, x2,...) onto the number with decimal expansion 0.z1x5 - --. Clearly (see the proof of Remark 1.39), f takes
E onto [0, 1]. Since [0, 1] is uncountable, it follows from 1.6.0c that Eq X Ey X - -- is uncountable.

1.6.1. The function 2z — 1 is 1-1 and takes N onto {1,3,5,...}. Thus this set is countable by definition.
1.6.2. By two applications of Theorem 1.42i, Q x Q is countable, hence Q® := (Q x Q) x Q is also countable.

1.6.3. Let g be a function that takes A onto B. If A is at most countable, then by Lemma 1.40 there is a
function f which takes N onto A. It follows (see Exercise 1.6.5a) that g o f takes N onto B. Hence by Lemma
1.40, B is at most countable, a contradiction.

1.6.4. By definition, there is an n € N and a 1-1 function ¢ which takes Z := {1,2,...,n} onto A. Let
Y(x) := f(p(x)) for x € Z. Since f and ¢ are 1-1, 1(x) = 1(y) implies ¢(x) = ¢(y) implies = y. Moreover,
since f and ¢ are onto, given b € B there is an a € A such that f(a) = b, and an x € Z such that ¢(x) = a, hence
U(x) = f(¢p(x)) = f(a) =b. Thus ¢ is 1-1 from Z onto B. By definition, then, B is finite.

1.6.5. a) Repeat the proof in Exercise 1.6.4 without referring to N and Z.

b) By the definition of By, it is clear that f takes A onto By. Suppose f~!(z) = f~!(y) for some z,y € By.
Since f is 1-1 from A onto By, it follows from Theorem 1.30 that z = f(f~!(z)) = f(f~'(y)) = y. Thus f~!is
1-1 on By.

c) If fis 1-1 (respectively, onto), then it follows from part a) that go f is 1-1 (respectively, onto).

Conversely, if go f is 1-1 (respectively, onto), then by parts a) and b), f = g logo f is 1-1 (respectively, onto).

1.6.6. a) We prove this result by induction on n.

Suppose n = 1. Since ¢ : {1} — {1}, it must satisfy ¢(1) = 1. In particular, in this case ¢ is both 1-1 and onto
and there is nothing to prove.

Suppose that the result holds for some integer n > 1 and let ¢ : {1,2,...,n+ 1} — {1,2,...,n 4+ 1}. Set
ko = ¢(n + 1) and define ¢ by
L < ko

w(@:{é—l 0> k.

The v is 1-1 from {1,2,..., ko — 1,ko + 1,...,n+ 1} onto {1,2,...,n}.

Suppose ¢ is 1-1 on {1,2,...,n+ 1}. Then ¢ is 1-1 on {1,2,...,n}, hence 1) o ¢ is 1-1 from {1,2,...,n} into
{1,2,...,n}. It follows from the inductive hypothesis that 1 o ¢ takes {1,2,...,n} onto {1,2,...,n}. By Exercise
1.6.5, ¢ takes {1,2,...,n} onto {1,2,..., kg —1,ko+1,...,n+ 1}. Since ¢(n+ 1) = ko, we conclude that ¢ takes
{1,2,...,n+ 1} onto {1,2,...,n+ 1}.

Conversely, if ¢ takes {1,2,...,n+1} onto {1,2,...,n+1}, then ¢ takes {1,2,...,n} onto {1,2,... ko —1,ko+
1,...,n+ 1}, so ¢ o ¢ takes {1,2,...,n} onto {1,2,...,n}. It follows from the inductive hypothesis that 1) o ¢ is
1-1on {1,2,...,n}. Hence by Exercise 1.6.5 and construction, ¢ is 1-1 on {1,2,...,n+ 1}.

b) We may suppose that E is nonempty. Hence by hypothesis, there is an n € N and a 1-1 function ¢ from E
onto {1,2,...,n}. Moreover, by Exercise 1.6.5b, the function ¢—! is 1-1 from {1,2,...,n} onto E.

Consider the function ¢! o f o ¢. Clearly, it takes {1,2,...,n} into {1,2,...,n}. Hence by part a), ¢~ Lo fo¢
is 1-1 if and only if it is onto. In particular, it follows from Exercise 1.6.5¢ that f is 1-1 if and only if f is onto.

1.6.7. a) Let ¢ = k/j. If k = 0 then n? =1 is a root of the polynomial = — 1. If & > 0 then n? is a root of the
polynomial 7 — n¥. If k < 0 then n9 is a root of the polynomial n=*27 — 1. Thus n? is algebraic.

b) By Theorem 1.42, there are countably many polynomials with integer coefficients. Each polynomial of degree
n has at most n roots. Hence the class of algebraic numbers of degree n is a countable union of finite sets, hence
countable.


https://ebookyab.ir/solution-manual-analysis-wade/

httEs://ebookyab.ir/solution-manual-analysis-wade/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

¢) Since any number is either algebraic or transcendental, R is the union of the set of algebraic numbers and
the set of transcendental numbers. By b), the former set is countable. Therefore, the latter must be uncountable
by the argument of Remark 1.43.


https://ebookyab.ir/solution-manual-analysis-wade/

