Introduction to Econometrics (4th Edition)

by
James H. Stock and Mark W. Watson

Solutions to End-of-Chapter Exercises: Chapter 2*

*Limited distribution: For Instructors Only. Answers to all odd-numbered questions are provided to students on the textbook website.
2.1. (a) Probability distribution function for Y

Outcome (number of heads)	$Y=0$	$Y=1$	$Y=2$
Probability	0.25	0.50	0.25

(b) Cumulative probability distribution function for Y

Outcome (number of heads)	$Y<0$	$0 \leq Y<1$	$1 \leq Y<2$	$Y \geq 2$
Probability	0	0.25	0.75	1.0

(c) $\mu_{Y}=E(Y)=(0 \times 0.25)+(1 \times 0.50)+(2 \times 0.25)=1.00$

Using Key Concept 2.3: $\operatorname{var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}$,
and
$E\left(Y^{2}\right)=\left(0^{2} \times 0.25\right)+\left(1^{2} \times 0.50\right)+\left(2^{2} \times 0.25\right)=1.50$
so that

$$
\operatorname{var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=1.50-(1.00)^{2}=0.50
$$

2.2. We know from Table 2.2 that $\operatorname{Pr}(Y=0)=0.22, \operatorname{Pr}(Y=1)=0.78, \operatorname{Pr}(X=0)=0.30$, $\operatorname{Pr}(X=1)=0.70$. So
(a)

$$
\begin{aligned}
\mu_{Y} & =E(Y)=0 \times \operatorname{Pr}(Y=0)+1 \times \operatorname{Pr}(Y=1) \\
& =0 \times 0.22+1 \times 0.78=0.78, \\
\mu_{X} & =E(X)=0 \times \operatorname{Pr}(X=0)+1 \times \operatorname{Pr}(X=1) \\
& =0 \times 0.30+1 \times 0.70=0.70 .
\end{aligned}
$$

(b)

$$
\begin{aligned}
\sigma_{X}^{2}= & E\left[\left(X-\mu_{X}\right)^{2}\right] \\
& =(0-0.70)^{2} \times \operatorname{Pr}(X=0)+(1-0.70)^{2} \times \operatorname{Pr}(X=1) \\
& =(-0.70)^{2} \times 0.30+0.30^{2} \times 0.70=0.21, \\
\sigma_{Y}^{2} & =E\left[\left(Y-\mu_{Y}\right)^{2}\right] \\
& =(0-0.78)^{2} \times \operatorname{Pr}(Y=0)+(1-0.78)^{2} \times \operatorname{Pr}(Y=1) \\
& =(-0.78)^{2} \times 0.22+0.22^{2} \times 0.78=0.1716 .
\end{aligned}
$$

(c)

$$
\begin{aligned}
\sigma_{X Y}= & \operatorname{cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
= & (0-0.70)(0-0.78) \operatorname{Pr}(X=0, Y=0)+(0-0.70)(1-0.78) \operatorname{Pr}(X=0, Y=1) \\
& +(1-0.70)(0-0.78) \operatorname{Pr}(X=1, Y=0)+(1-0.70)(1-0.78) \operatorname{Pr}(X=1, Y=1) \\
= & (-0.70) \times(-0.78) \times 0.15+(-0.70) \times 0.22 \times 0.15+0.30 \times(-0.78) \times 0.07+0.30 \times 0.22 \times 0.63 \\
= & 0.084, \\
\operatorname{corr}(& X, Y)=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}=\frac{0.084}{\sqrt{0.21 \times 0.1716}}=0.4425 .
\end{aligned}
$$

2.3. For the two new random variables $W=3+6 X$ and $V=20-7 Y$, we have:
(a)

$$
\begin{aligned}
E(V) & =E(20-7 Y)=20-7 E(Y)=20-7 \times 0.78=14.54, \\
E(W) & =E(3+6 X)=3+6 E(X)=3+6 \times 0.70=7.2
\end{aligned}
$$

(b)

$$
\begin{aligned}
\sigma_{W}^{2} & =\operatorname{var}(3+6 X)=6^{2} \sigma_{X}^{2}=36 \times 0.21=7.56 \\
\sigma_{V}^{2} & =\operatorname{var}(20-7 Y)=(-7)^{2} \times \sigma_{Y}^{2}=49 \times 0.1716=8.4084
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \sigma_{W V}=\operatorname{cov}(3+6 X, 20-7 Y)=6(-7) \operatorname{cov}(X, Y)=-42 \times 0.084=-3.52 \\
& \quad \operatorname{corr}(W, V)=\frac{\sigma_{W V}}{\sigma_{W} \sigma_{V}}=\frac{-3.528}{\sqrt{7.56 \times 8.4084}}=-0.4425 .
\end{aligned}
$$

2.4. (a) $E\left(X^{3}\right)=0^{3} \times(1-p)+1^{3} \times p=p$
(b) $E\left(X^{k}\right)=0^{k} \times(1-p)+1^{k} \times p=p$
(c) $E(X)=0.3$
$\operatorname{var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=0.3-0.09=0.21$
Thus, $\sigma=\sqrt{0.21}=0.46$.
To compute the skewness, use the formula from exercise 2.21:

$$
\begin{aligned}
E(X-\mu)^{3} & =E\left(X^{3}\right)-3\left[E\left(X^{2}\right)\right][E(X)]+2[E(X)]^{3} \\
& =0.3-3 \times 0.3^{2}+2 \times 0.3^{3}=0.084
\end{aligned}
$$

Alternatively, $E(X-\mu)^{3}=\left[(1-0.3)^{3} \times 0.3\right]+\left[(0-0.3)^{3} \times 0.7\right]=0.084$
Thus, skewness $=E(X-\mu)^{3} / \sigma^{3}=.084 / 0.46^{3}=0.87$.
To compute the kurtosis, use the formula from exercise 2.21:

$$
\begin{aligned}
E(X-\mu)^{4} & =E\left(X^{4}\right)-4[E(X)]\left[E\left(X^{3}\right)\right]+6[E(X)]^{2}\left[E\left(X^{2}\right)\right]-3[E(X)]^{4} \\
& =0.3-4 \times 0.3^{2}+6 \times 0.3^{3}-3 \times 0.3^{4}=0.0777
\end{aligned}
$$

Alternatively, $E(X-\mu)^{4}=\left[(1-0.3)^{4} \times 0.3\right]+\left[(0-0.3)^{4} \times 0.7\right]=0.0777$
Thus, kurtosis is $E(X-\mu)^{4} / \sigma^{4}=.0777 / 0.46^{4}=1.76$

https://ebookyab.ir/solution-manual-econometrics-stock-watson/ Email: ebookyab. ir@gmail.com Phone:+989359542944 (Telegram, Whats App, Eitaa)

2.5. Let X denote temperature in ${ }^{\circ} \mathrm{F}$ and Y denote temperature in ${ }^{\circ} \mathrm{C}$. Recall that $Y=0$ when $X=32$ and $Y=100$ when $X=212$.

This implies $Y=(100 / 180) \times(X-32)$ or $Y=-17.78+(5 / 9) \times X$.

Using Key Concept 2.3, $\mu_{X}=70^{\circ} \mathrm{F}$ implies that $\mu_{Y}=-17.78+(5 / 9) \times 70=21.11^{\circ} \mathrm{C}$, and $\sigma_{X}=7^{\circ} \mathrm{F}$ implies $\sigma_{Y}=(5 / 9) \times 7=3.89^{\circ} \mathrm{C}$.

$\operatorname{Pr}(X=1)=0.398, \operatorname{Pr}(Y=0)=0.035, \operatorname{Pr}(Y=1)=0.965$.
(a)

$$
\begin{aligned}
E(Y) & =\mu_{Y}=0 \times \operatorname{Pr}(Y=0)+1 \times \operatorname{Pr}(Y=1) \\
& =0 \times 0.035+1 \times 0.965=0.965 .
\end{aligned}
$$

(b)

$$
\begin{aligned}
\text { Unemployment Rate } & =\frac{\#(\text { unemployed })}{\#(\text { labor force })} \\
& =\operatorname{Pr}(Y=0)=1-\operatorname{Pr}(Y=1)=1-E(Y)=1-0.965=0.035 .
\end{aligned}
$$

(c) Calculate the conditional probabilities first:

$$
\begin{aligned}
& \operatorname{Pr}(Y=0 \mid X=0)=\frac{\operatorname{Pr}(X=0, Y=0)}{\operatorname{Pr}(X=0)}=\frac{0.026}{0.602}=0.043, \\
& \operatorname{Pr}(Y=1 \mid X=0)=\frac{\operatorname{Pr}(X=0, Y=1)}{\operatorname{Pr}(X=0)}=\frac{0.576}{0.602}=0.957, \\
& \operatorname{Pr}(Y=0 \mid X=1)=\frac{\operatorname{Pr}(X=1, Y=0)}{\operatorname{Pr}(X=1)}=\frac{0.009}{0.398}=0.023, \\
& \operatorname{Pr}(Y=1 \mid X=1)=\frac{\operatorname{Pr}(X=1, Y=1)}{\operatorname{Pr}(X=1)}=\frac{0.389}{0.398}=0.978 .
\end{aligned}
$$

The conditional expectations are

$$
\begin{aligned}
E(Y \mid X=1) & =0 \times \operatorname{Pr}(Y=0 \mid X=1)+1 \times \operatorname{Pr}(Y=1 \mid X=1) \\
& =0 \times 0.023+1 \times 0.978=0.978, \\
E(Y \mid X=0) & =0 \times \operatorname{Pr}(Y=0 \mid X=0)+1 \times \operatorname{Pr}(Y=1 \mid X=0) \\
& =0 \times 0.043+1 \times 0.957=0.957 .
\end{aligned}
$$

(d) Use the solution to part (b),

Unemployment rate for college graduates $=1-E(Y \mid X=1)=1-0.978=0.023$.
Unemployment rate for non-college graduates $=1-E(Y \mid X=0)=1-0.957=0.043$
(e) The probability that a randomly selected worker who is reported being unemployed is a college graduate is

$$
\operatorname{Pr}(X=1 \mid Y=0)=\frac{\operatorname{Pr}(X=1, Y=0)}{\operatorname{Pr}(Y=0)}=\frac{0.009}{0.035}=0.257 .
$$

The probability that this worker is a non-college graduate is

$$
\operatorname{Pr}(X=0 \mid Y=0)=1-\operatorname{Pr}(X=1 \mid Y=0)=1-0.257=0.743 .
$$

(f) Educational achievement and employment status are not independent because they do not satisfy that, for all values of x and y,

$$
\operatorname{Pr}(X=x \mid Y=y)=\operatorname{Pr}(X=x) .
$$

For example, from part (e) $\operatorname{Pr}(X=0 \mid Y=0)=0.743$, while from the table $\operatorname{Pr}(X=0)=0.602$.
2.7. Using obvious notation, $C=M+F$; thus $\mu_{C}=\mu_{M}+\mu_{F}$ and $\sigma_{C}^{2}=\sigma_{M}^{2}+\sigma_{F}^{2}+2 \operatorname{cov}(M, F)$. This implies
(a) $\mu_{C}=40+45=\$ 85,000$ per year.
(b) $\operatorname{corr}(M, F)=\frac{\operatorname{cov}(M, F)}{\sigma_{M} \sigma_{F}}$, so that $\operatorname{cov}(M, F)=\sigma_{M} \sigma_{F} \operatorname{corr}(M, F)$. Thus $\operatorname{cov}(M, F)=12 \times 18 \times 0.80=172.80$, where the units are squared thousands of dollars per year.
(c) $\sigma_{C}^{2}=\sigma_{M}^{2}+\sigma_{F}^{2}+2 \operatorname{cov}(M, F)$, so that $\sigma_{C}^{2}=12^{2}+18^{2}+2 \times 172.80=813.60$, and $\sigma_{C}=\sqrt{813.60}=28.524$ thousand dollars per year.
(d) First you need to look up the current Euro/dollar exchange rate in the Wall Street Journal, the Federal Reserve web page, or other financial data outlet. Suppose that this exchange rate is e (say $e=0.85$ Euros per Dollar or $1 / e=1.18$ Dollars per Euro); each 1 Eollar is therefore with e Euros. The mean is therefore $e \times \mu_{C}$ (in units of thousands of euros per year), and the standard deviation is $e \times \sigma_{C}$ (in units of thousands of euros per year). The correlation is unit-free, and is unchanged.
2.8. $\mu_{Y}=E(Y)=1, \sigma_{Y}^{2}=\operatorname{var}(Y)=4$. With $Z=\frac{1}{2}(Y-1)$,

$$
\begin{aligned}
& \mu_{Z}=E\left(\frac{1}{2}(Y-1)\right)=\frac{1}{2}\left(\mu_{Y}-1\right)=\frac{1}{2}(1-1)=0, \\
& \sigma_{Z}^{2}=\operatorname{var}\left(\frac{1}{2}(Y-1)\right)=\frac{1}{4} \sigma_{Y}^{2}=\frac{1}{4} \times 4=1
\end{aligned}
$$

https://el Email: eboo	k 2.9.		n-manual-econometrics-stock hone:+989359542944 (Telegram, What							
			2.9.							
										Probability Distribution of X
			14	22	30	40	65			
	Value of X	1	0.02	0.05	0.10	0.03	0.01	0.21		
		5	0.17	0.15	0.05	0.02	0.01	0.40		
		8	0.02	0.03	0.15	0.10	0.09	0.39		
	Probability d of \boldsymbol{Y}		0.21	0.23	0.30	0.15	0.11	1.00		

(a) The probability distribution is given in the table above.

$$
\begin{aligned}
& E(Y)=14 \times 0.21+22 \times 0.23+30 \times 0.30+40 \times 0.15+65 \times 0.11=30.15 \\
& E\left(Y^{2}\right)=14^{2} \times 0.21+22^{2} \times 0.23+30^{2} \times 0.30+40^{2} \times 0.15+65^{2} \times 0.11=1127.23 \\
& \operatorname{var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=218.21
\end{aligned}
$$

$$
\sigma_{Y}=14.77
$$

(b) The conditional probability of $Y \mid X=8$ is given in the table below

Value of \boldsymbol{Y}					
$\mathbf{1 4}$	$\mathbf{2 2}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{6 5}$	
$0.02 / 0.39$	$0.03 / 0.39$	$0.15 / 0.39$	$0.10 / 0.39$	$0.09 / 0.39$	

$$
\begin{aligned}
E(Y \mid X=8)= & 14 \times(0.02 / 0.39)+22 \times(0.03 / 0.39)+30 \times(0.15 / 0.39) \\
& +40 \times(0.10 / 0.39)+65 \times(0.09 / 0.39)=39.21 \\
E\left(Y^{2} \mid X=8\right) & =14^{2} \times(0.02 / 0.39)+22^{2} \times(0.03 / 0.39)+30^{2} \times(0.15 / 0.39) \\
& +40^{2} \times(0.10 / 0.39)+65^{2} \times(0.09 / 0.39)=1778.7
\end{aligned}
$$

$\operatorname{var}(Y)=1778.7-39.21^{2}=241.65$
$\sigma_{Y \mid X=8}=15.54$
(c)

$$
\begin{aligned}
& E(X Y)=(1 \times 14 \times 0.02)+(1 \times 22: 0.05)+\cdots(8 \times 65 \times 0.09)=171.7 \\
& \operatorname{cov}(X, Y)=E(X Y)-E(X) E(Y)=171.7-5.33 \times 30.15=11.0 \\
& \operatorname{corr}(X, Y)=\operatorname{cov}(X, Y) /\left(\sigma_{X} \sigma_{Y}\right)=11.0 /(2.60 \times 14.77)=0.286
\end{aligned}
$$

2.10. Using the fact that if $Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ then $\frac{Y-\mu_{Y}}{\sigma_{Y}} \sim N(0,1)$ and Appendix Table 1, we have
(a) $\operatorname{Pr}(Y \leq 3)=\operatorname{Pr}\left(\frac{Y-1}{2} \leq \frac{3-1}{2}\right)=\Phi(1)=0.8413$.
(b)

$$
\begin{aligned}
\operatorname{Pr}(Y>0) & =1-\operatorname{Pr}(Y \leq 0) \\
& =1-\operatorname{Pr}\left(\frac{Y-3}{3} \leq \frac{0-3}{3}\right)=1-\Phi(-1)=\Phi(1)=0.8413 .
\end{aligned}
$$

(c)

$$
\begin{aligned}
\operatorname{Pr}(40 \leq Y \leq 52) & =\operatorname{Pr}\left(\frac{40-50}{5} \leq \frac{Y-50}{5} \leq \frac{52-50}{5}\right) \\
& =\Phi(0.4)-\Phi(-2)=\Phi(0.4)-[1-\Phi(2)] \\
& =0.6554-1+0.9772=0.6326 .
\end{aligned}
$$

(d)

$$
\begin{aligned}
\operatorname{Pr}(6 \leq Y \leq 8) & =\operatorname{Pr}\left(\frac{6-5}{\sqrt{2}} \leq \frac{Y-5}{\sqrt{2}} \leq \frac{8-5}{\sqrt{2}}\right) \\
& =\Phi(2.1213)-\Phi(0.7071) \\
& =0.9831-0.7602=0.2229 .
\end{aligned}
$$

2.11. (a) 0.90
(b) 0.05
(c) 0.05
(d) When $Y \sim \chi_{10}^{2}$, then $Y / 10 \sim F_{10, \infty}$.
(e) $Y=Z^{2}$, where $Z \sim \mathrm{~N}(0,1)$, thus $\operatorname{Pr}(Y \leq 1)=\operatorname{Pr}(-1 \leq Z \leq 1)=0.32$.
2.12. (a) 0.05
(b) 0.950
(c) 0.953
(d) The $t_{d f}$ distribution and $\mathrm{N}(0,1)$ are approximately the same when $d f$ is large.
(e) 0.10
(f) 0.01
2.13. (a) $E\left(Y^{2}\right)=\operatorname{Var}(Y)+\mu_{Y}^{2}=1+0=1 ; E\left(W^{2}\right)=\operatorname{Var}(W)+\mu_{W}^{2}=100+0=100$.
(b) Y and W are symmetric around 0 , thus skewness is equal to 0 ; because their mean is zero, this means that the third moment is zero.
(c) The kurtosis of the normal is 3 , so $3=\frac{E\left(Y-\mu_{Y}\right)^{4}}{\sigma_{Y}^{4}}$; solving yields $\mathrm{E}\left(Y^{4}\right)=3$; a similar calculation yields the results for W.
(d) First, condition on $X=0$, so that $S=W$:

$$
E(S \mid X=0)=0 ; E\left(S^{2} \mid X=0\right)=100, E\left(S^{3} \mid X=0\right)=0, E\left(S^{4} \mid X=0\right)=3 \times 100^{2} .
$$

Similarly,

$$
E(S \mid X=1)=0 ; E\left(S^{2} \mid X=1\right)=1, E\left(S^{3} \mid X=1\right)=0, E\left(S^{4} \mid X=1\right)=3 .
$$

From the large of iterated expectations

$$
\begin{aligned}
& E(S)=E(S \mid X=0) \times \operatorname{Pr}(\mathrm{X}=0)+E(S \mid X=1) \times \operatorname{Pr}(X=1)=0 \\
& E\left(S^{2}\right)=E\left(S^{2} \mid X=0\right) \times \operatorname{Pr}(\mathrm{X}=0)+E\left(S^{2} \mid X=1\right) \times \operatorname{Pr}(X=1)=100 \times 0.01+1 \times 0.99=1.99 \\
& E\left(S^{3}\right)=E\left(S^{3} \mid X=0\right) \times \operatorname{Pr}(\mathrm{X}=0)+E\left(S^{3} \mid X=1\right) \times \operatorname{Pr}(X=1)=0 \\
& E\left(S^{4}\right)=E\left(S^{4} \mid X=0\right) \times \operatorname{Pr}(\mathrm{X}=0)+E\left(S^{4} \mid X=1\right) \times \operatorname{Pr}(X=1) \\
& \quad=3 \times 100^{2} \times 0.01+3 \times 1 \times 0.99=302.97
\end{aligned}
$$

(e) $\mu_{S}=E(S)=0$, thus $E\left(S-\mu_{S}\right)^{3}=E\left(S^{3}\right)=0$ from part (d). Thus skewness $=0$.

Similarly, $\sigma_{S}^{2}=E\left(S-\mu_{S}\right)^{2}=E\left(S^{2}\right)=1.99$, and $E\left(S-\mu_{S}\right)^{4}=E\left(S^{4}\right)=302.97$.
Thus, kurtosis $=302.97 /\left(1.99^{2}\right)=76.5$

