
Solutions to Chapter 2 exercises

2.1 Let x ∈ (X \C)∩D. Then x ∈ X, x ∈ D, x �∈ C. So x ∈ D, x �∈ C which gives x ∈ D \C .

Hence (X \ C) ∩ D ⊆ D \ C .

Conversely, if x ∈ D \C then x �∈ C so x ∈ X \C , and x ∈ D . So x ∈ (X \C)∩D . Hence

D \ C ⊆ (X \ C) ∩ D.

Together these prove that (X \ C) ∩ D = D \ C .

2.2 Suppose that x ∈ A \ (V ∩ A). Then x ∈ A and x �∈ V ∩ A so x �∈ V. Then x ∈ A and

x ∈ X \ V so x ∈ A ∩ (X \ V ). Hence A \ (V ∩ A) ⊆ A ∩ (X \ V ).

Conversely suppose x ∈ A∩(X \V ). Then x ∈ A and x ∈ X \V so x �∈ V , hence x �∈ V ∩A.

This shows that x ∈ A \ (V ∩ A). Hence A ∩ (X \ V ) ⊆ A \ (V ∩ A).

Together these prove that A \ (V ∩ A) = A ∩ (X \ V ).

2.3 Suppose that x ∈ V . Then x ∈ X and x �∈ X \ V = X ∩ U , so x �∈ U . So x ∈ X ⊆ Y and

x �∈ U so x ∈ Y \ U . This gives x ∈ X ∩ (Y \ U). Hence V ⊆ X ∩ (Y \ U).

Conversely suppose that x ∈ X ∩ (Y \U). Then x ∈ X , and x �∈ U , so x �∈ X ∩U = X \ V .

Hence x ∈ V . Hence X ∩ (Y \ U) ⊆ V .

Together these show that V = X ∩ (Y \ U).

2.4 If (a, b) ∈ U × V then a ∈ U so (a, b) ∈ U × Y and b ∈ V so (a, b) ∈ X × V . Hence

(a, b) ∈ (X × V ) ∩ (U × Y ). So U × V ⊆ (X × V ) ∩ (U × Y ).

Conversely if (a, b) ∈ (X × V ) ∩ (U × Y ), then b ∈ V and a ∈ U so (a, b) ∈ U × V . Hence

(X × V ) ∩ (U × Y ) ⊆ U × V .

Together these give U × V = (X × V ) ∩ (U × Y ).

2.5 If (x, y) ∈ (U1 × V1) ∩ (U2 × V2) then x ∈ U1 and x ∈ U2 so x ∈ U1 ∩ U2 , and similarly

y ∈ V1 ∩ V2 , so (x, y) ∈ (U1 ∩ U2) × (V1 ∩ V2). This shows that

(U1 × V1) ∩ (U2 × V2) ⊆ (U1 ∩ U2) × (V1 ∩ V2).

Conversely if x ∈ (U1 ∩U2)× (V1 ∩V2) then x ∈ U1, x ∈ U2, y ∈ V1, y ∈ V2 so (x, y) ∈ U1 ×V1

and also (x, y) ∈ U2 × V2 , so (x, y) ∈ (U1 × V1) ∩ (U2 × V2). This shows that

(U1 ∩ U2) × (V1 ∩ V2) ⊆ (U1 × V1) ∩ (U2 × V2).

Together these show that (U1 × V1) ∩ (U2 × V2) = (U1 ∩ U2) × (V1 ∩ V2).
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2.6 If x ∈ U ∩ V then x ∈
⋃

i∈I

Bi1 and x ∈
⋃

j∈J

Bj2 , so for some i0 ∈ I and j0 ∈ J we have

x ∈ Bi01 and x ∈ Bj02 , so

x ∈ Bi01 ∩ Bj02 ⊆
⋃

(i, j)∈I×J

Bi1 ∩ Bj2.

Hence

U ∩ V ⊆
⋃

(i, j)∈I×J

Bi1 ∩ Bj2.

Conversely, if x ∈
⋃

(i, j)∈I×J

Bi1 ∩ Bj2 then for some i0 ∈ I and j0 ∈ J we have x ∈ Bi01 ∩ Bj02 ,

so x ∈ Bi01 ⊆ U and similarly x ∈ V so x ∈ U ∩ V . Hence

⋃

(i, j)∈I×J

Bi1 ∩ Bj2 ⊆ U ∩ V.

Together these show that

U ∩ V =
⋃

(i, j)∈I×J

Bi1 ∩ Bj2.

2.7 (a) Let the distinct equivalence classes be {Ai : i ∈ I} . Each Ai , being an equivalence class,

satisfies Ai ⊆ X. To see that the distinct equivalence classes are disjoint, suppose that for some

i, j ∈ I and some x ∈ X we have x ∈ Ai ∩Aj . Then for any a ∈ Ai we have a ∼ x and x ∈ Aj ,

hence a ∈ Aj . This shows Ai ⊆ Aj . Similarly Aj ⊆ Ai . But this shows that Ai = Aj . Thus

distinct equivalence classes are mutually disjoint. Finally, any x ∈ X is in some equivalence

class with respect to ∼, so X ⊆
⋃

i∈I

Ai. Also, since each Ai is a subset of X we have
⋃

i∈I

Ai ⊆ X .

So X =
⋃

i∈I

Ai.

(b) We define x1 ∼ x2 iff x1, x2 ∈ Ai for some i ∈ I . This is reflexive since each x ∈ X is

in some Ai so x ∼ x. It is symmetric since if x1 ∼ x2 then x1, x2 ∈ Ai for some i ∈ I , and

then also x2, x1 ∈ Ai so x2 ∼ x1 . Finally it is transitive since if x1 ∼ x2 and x2 ∼ x3 then

x1, x2 ∈ Ai for some i ∈ I and x2, x3 ∈ Aj for some j ∈ I . Now x2 ∈ Ai ∩ Aj , and since

Ai ∩Aj = ∅ for i �= j , we must have i = j . Hence x1, x3 ∈ Ai and we have x1 ∼ x3 as required

for transitivity.

2.8 Let ∼ be an equivalence relation on the set X . Then P(∼) = {Ai : i ∈ I} , where x1 ∼ x2 iff

x1, x2 ∈ Ai for some i ∈ I . The equivalence relation ∼′=∼ (P(∼)) is then defined by x1 ∼′ x2

iff x1, x2 ∈ Ai for some i ∈ I , which says that ∼′=∼, that is ∼ (P(∼)) =∼.

If we begin with a partition P = {Ai : i ∈ I} , then ∼ (P) is the equivalence relation ∼′

defined by x1 ∼′ x2 iff x1, x2 ∈ Ai for some i ∈ I , and then clearly P(∼′) = P . This says that

P(∼ (P)) = P .
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Solutions to Chapter 3 exercises

3.1 Suppose that y ∈ f(A). Then y = f(a) for some a ∈ A. Since A ⊆ B , also a ∈ B so

y = f(a) ∈ f(B). By definition, f(B) ⊆ Y . This shows that f(A) ⊆ f(B) ⊆ Y.

Suppose that x ∈ f−1(C). Then f(x) ∈ C , so since C ⊆ D also f(x) ∈ D. Hence

x ∈ f−1(D). By definition f−1(D) ⊆ X . This shows that f−1(C) ⊆ f−1(D) ⊆ X.

3.2 We see, either from a sketch or arguing analytically, that

f([0, π/2]) = [0, 1], f([0, ∞)) = [−1, 1], f−1([0, 1]) =
⋃

n∈Z

[2nπ, (2n + 1)π],

f−1([0, 1/2]) =
⋃

n∈Z

([2nπ, (2n + 1/3)π] ∪ [(2n + 2/3)π, (2n + 1)π]), f−1([−1, 1]) = R.

3.3 First suppose that x ∈ (g ◦ f)−1(U). Then g(f(x)) = (g ◦ f)(x) ∈ U . Hence by definition

of inverse images, f(x) ∈ g−1(U), and again by definition x ∈ f−1(g−1(U)). This shows that

(g ◦ f)−1(U) ⊆ f−1(g−1(U)).

Now suppose x ∈ f−1(g−1(U)). Then f(x) ∈ g−1(U), so g(f(x)) ∈ U , that is (g ◦f)(x) ∈ U ,

and by definition of inverse images, x ∈ (g ◦ f)−1(U). Hence f−1(g−1(U)) ⊆ (g ◦ f)−1(U).

These together show that (g ◦ f)−1(U) = f−1(g−1(U)).

3.4 We see that

f([0, 1]) = {(x, 2x) : x ∈ [0, 1]} , which is the straight line segment in R
2 joining the origin

to the point with coordinates (1, 2).

We see that (x, 2x) ∈ [0, 1] × [0, 1] iff 0 � x � 1/2, so f−1([0, 1] × [0, 1]) = [0, 1/2].

We see that (x, 2x) ∈ D iff x ∈ R and x2 + (2x)2 � 1, which holds iff 5x2 � 1, so

f−1(D) = [−1/
√

5, 1/
√

5].

3.5 We know from Proposition 3.14 in the book that if f : X → Y is onto and C ⊆ Y then

f(f−1(C)) = C.

Suppose that f : X → Y is such that f(f−1(C)) = C for any subset C of Y . For any y ∈ Y

we can put C = {y} , and get that f(f−1(y)) = {y}. This tells us that there exists x ∈ f−1(y)

(for which of course f(x) = y ) so f−1(y) �= ∅ . This proves that f is onto.
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3.6 Let f : X → Y . We know from Proposition 3.14 in the book that A ⊆ f−1(f(A)) for any

A ⊆ X . Suppose that f is injective and let x ∈ f−1(f(A)). Then f(x) ∈ f(A) so f(x) = f(a)

for some a ∈ A. But f is injective so x = a. This proves that f−1(f(A)) ⊆ A, and together

these give A = f−1(f(A)).

Now suppose that A = f−1(f(A)) for any A ⊆ X . For any x ∈ X take A = {x} and we get

{x} = f−1(f(x)). this says that if f(x′) = f(x) then x′ = x, that is f is injective.

3.7 (i) We can have y �= y′ with neither y nor y′ in the image of f , so that f−1(y) = f−1(y′) = ∅.
For a concrete counterexample, define f : {0} → {0, 1, 2} by f(0) = 0 and take y = 1, y′ = 2.

(ii) Suppose that f : X → Y is onto and y, y′ ∈ Y with y �= y′. Then f−1(y) �= f−1(y′);

for if f−1(y) = f−1(y′), then there exists x ∈ f−1(y) = f−1(y′) since f is onto. This gives the

contradiction y = f(x) = y′ .

3.8 We know from Proposition 3.9 in the book that f(A) \ f(B) ⊆ f(A \ B) for any subsets

A, B of X .

Suppose first that also f(A\B) ⊆ f(A)\f(B). Then if y ∈ f(A\B) we know that y �∈ f(B).

Hence f(A \ B) ∩ f(B) = ∅.
Conversely suppose that f(A \ B) ∩ f(B) = ∅. Let y ∈ f(A \ B). Then y �∈ f(B). Also,

y = f(x) for some x ∈ A\B . Thus y ∈ f(A), but y �∈ f(B), so y ∈ f(A)\f(B). This proves that

f(A\B) ⊆ f(A)\f(B), and together with the opening remark we have f(A\B) = f(A)\f(B).

If f(A\B)∩f(B) �= ∅ , let y ∈ f(A\B)∩f(B). Then y = f(x) for some x ∈ A\B and also

y = f(x′) for some x′ ∈ B , and we have x′ �= x, so f is not injective. Hence if f is injective

then f(A \ B) ∩ f(B) = ∅ and f(A \ B) = f(A) \ f(B) by the first part of the question.

3.9 (a) Suppose that y ∈ f(A) ∩ C. Then y ∈ C , and y = f(x) for some x ∈ A. Then

x ∈ f−1(C), so x ∈ A∩f−1(C) and y = f(x) ∈ f(A∩f−1(C)). Hence f(A)∩C ⊆ f(A∩f−1(C)).

Conversely suppose y ∈ f(A ∩ f−1(C)). Then y = f(x) for some x ∈ A ∩ f−1(C). Then

y ∈ f(A) since x ∈ A and y = f(x) ∈ C since x ∈ f−1(C). Hence f(A ∩ f−1(C)) ⊆ f(A) ∩ C .

Together these show that f(A) ∩ C = f(A ∩ f−1(C)).

(b) We apply (a) with C = f(B). This tells us that f(A) ∩ f(B) = f(A ∩ f−1(f(B))), so since

f−1(f(B)) = B we have f(A) ∩ f(B) = f(A ∩ B).

3.10 Each f−1(y) for y ∈ Y is non-empty since f is onto. If y, y′ ∈ Y with y �= y′ then we can

see that f−1(y) ∩ f−1(y′) = ∅ since if x ∈ f−1(y) ∩ f−1(y′) then y = f(x) = y′ , contradicting

the hypothesis. Finally,
⋃

y∈Y

f−1(y) = X by Proposition 3.7 in the book, since
⋃

y∈Y

{y} = Y .
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