Solutions to Chapter 2 exercises

2.1 Let $x \in(X \backslash C) \cap D$. Then $x \in X, x \in D, x \notin C$. So $x \in D, x \notin C$ which gives $x \in D \backslash C$. Hence $(X \backslash C) \cap D \subseteq D \backslash C$.

Conversely, if $x \in D \backslash C$ then $x \notin C$ so $x \in X \backslash C$, and $x \in D$. So $x \in(X \backslash C) \cap D$. Hence $D \backslash C \subseteq(X \backslash C) \cap D$.

Together these prove that $(X \backslash C) \cap D=D \backslash C$.
2.2 Suppose that $x \in A \backslash(V \cap A)$. Then $x \in A$ and $x \notin V \cap A$ so $x \notin V$. Then $x \in A$ and $x \in X \backslash V$ so $x \in A \cap(X \backslash V)$. Hence $A \backslash(V \cap A) \subseteq A \cap(X \backslash V)$.

Conversely suppose $x \in A \cap(X \backslash V)$. Then $x \in A$ and $x \in X \backslash V$ so $x \notin V$, hence $x \notin V \cap A$. This shows that $x \in A \backslash(V \cap A)$. Hence $A \cap(X \backslash V) \subseteq A \backslash(V \cap A)$.

Together these prove that $A \backslash(V \cap A)=A \cap(X \backslash V)$.
2.3 Suppose that $x \in V$. Then $x \in X$ and $x \notin X \backslash V=X \cap U$, so $x \notin U$. So $x \in X \subseteq Y$ and $x \notin U$ so $x \in Y \backslash U$. This gives $x \in X \cap(Y \backslash U)$. Hence $V \subseteq X \cap(Y \backslash U)$.

Conversely suppose that $x \in X \cap(Y \backslash U)$. Then $x \in X$, and $x \notin U$, so $x \notin X \cap U=X \backslash V$. Hence $x \in V$. Hence $X \cap(Y \backslash U) \subseteq V$.

Together these show that $V=X \cap(Y \backslash U)$.
2.4 If $(a, b) \in U \times V$ then $a \in U$ so $(a, b) \in U \times Y$ and $b \in V$ so $(a, b) \in X \times V$. Hence $(a, b) \in(X \times V) \cap(U \times Y)$. So $U \times V \subseteq(X \times V) \cap(U \times Y)$.

Conversely if $(a, b) \in(X \times V) \cap(U \times Y)$, then $b \in V$ and $a \in U$ so $(a, b) \in U \times V$. Hence $(X \times V) \cap(U \times Y) \subseteq U \times V$.

Together these give $U \times V=(X \times V) \cap(U \times Y)$.
2.5 If $(x, y) \in\left(U_{1} \times V_{1}\right) \cap\left(U_{2} \times V_{2}\right)$ then $x \in U_{1}$ and $x \in U_{2}$ so $x \in U_{1} \cap U_{2}$, and similarly $y \in V_{1} \cap V_{2}$, so $(x, y) \in\left(U_{1} \cap U_{2}\right) \times\left(V_{1} \cap V_{2}\right)$. This shows that

$$
\left(U_{1} \times V_{1}\right) \cap\left(U_{2} \times V_{2}\right) \subseteq\left(U_{1} \cap U_{2}\right) \times\left(V_{1} \cap V_{2}\right) .
$$

Conversely if $x \in\left(U_{1} \cap U_{2}\right) \times\left(V_{1} \cap V_{2}\right)$ then $x \in U_{1}, x \in U_{2}, y \in V_{1}, y \in V_{2}$ so $(x, y) \in U_{1} \times V_{1}$ and also $(x, y) \in U_{2} \times V_{2}$, so $(x, y) \in\left(U_{1} \times V_{1}\right) \cap\left(U_{2} \times V_{2}\right)$. This shows that

$$
\left(U_{1} \cap U_{2}\right) \times\left(V_{1} \cap V_{2}\right) \subseteq\left(U_{1} \times V_{1}\right) \cap\left(U_{2} \times V_{2}\right) .
$$

Together these show that $\left(U_{1} \times V_{1}\right) \cap\left(U_{2} \times V_{2}\right)=\left(U_{1} \cap U_{2}\right) \times\left(V_{1} \cap V_{2}\right)$.
2.6 If $x \in U \cap V$ then $x \in \bigcup_{i \in I} B_{i 1}$ and $x \in \bigcup_{j \in J} B_{j 2}$, so for some $i_{0} \in I$ and $j_{0} \in J$ we have $x \in B i_{0} 1$ and $x \in B_{j_{0} 2}$, so

$$
x \in B_{i_{0} 1} \cap B_{j_{0} 2} \subseteq \bigcup_{(i, j) \in I \times J} B_{i 1} \cap B_{j 2} .
$$

Hence

$$
U \cap V \subseteq \bigcup_{(i, j) \in I \times J} B_{i 1} \cap B_{j 2} .
$$

Conversely, if $x \in \bigcup_{(i, j) \in I \times J} B_{i 1} \cap B_{j 2}$ then for some $i_{0} \in I$ and $j_{0} \in J$ we have $x \in B_{i_{0} 1} \cap B_{j_{0} 2}$, so $x \in B_{i_{0} 1} \subseteq U$ and similarly $x \in V$ so $x \in U \cap V$. Hence

$$
\bigcup_{(i, j) \in I \times J} B_{i 1} \cap B_{j 2} \subseteq U \cap V .
$$

Together these show that

$$
U \cap V=\bigcup_{(i, j) \in I \times J} B_{i 1} \cap B_{j 2}
$$

2.7 (a) Let the distinct equivalence classes be $\left\{A_{i}: i \in I\right\}$. Each A_{i}, being an equivalence class, satisfies $A_{i} \subseteq X$. To see that the distinct equivalence classes are disjoint, suppose that for some $i, j \in I$ and some $x \in X$ we have $x \in A_{i} \cap A_{j}$. Then for any $a \in A_{i}$ we have $a \sim x$ and $x \in A_{j}$, hence $a \in A_{j}$. This shows $A_{i} \subseteq A_{j}$. Similarly $A_{j} \subseteq A_{i}$. But this shows that $A_{i}=A_{j}$. Thus distinct equivalence classes are mutually disjoint. Finally, any $x \in X$ is in some equivalence class with respect to \sim, so $X \subseteq \bigcup_{i \in I} A_{i}$. Also, since each A_{i} is a subset of X we have $\bigcup_{i \in I} A_{i} \subseteq X$. So $X=\bigcup_{i \in I} A_{i}$.
(b) We define $x_{1} \sim x_{2}$ iff $x_{1}, x_{2} \in A_{i}$ for some $i \in I$. This is reflexive since each $x \in X$ is in some A_{i} so $x \sim x$. It is symmetric since if $x_{1} \sim x_{2}$ then $x_{1}, x_{2} \in A_{i}$ for some $i \in I$, and then also $x_{2}, x_{1} \in A_{i}$ so $x_{2} \sim x_{1}$. Finally it is transitive since if $x_{1} \sim x_{2}$ and $x_{2} \sim x_{3}$ then $x_{1}, x_{2} \in A_{i}$ for some $i \in I$ and $x_{2}, x_{3} \in A_{j}$ for some $j \in I$. Now $x_{2} \in A_{i} \cap A_{j}$, and since $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$, we must have $i=j$. Hence $x_{1}, x_{3} \in A_{i}$ and we have $x_{1} \sim x_{3}$ as required for transitivity.
2.8 Let \sim be an equivalence relation on the set X. Then $\mathcal{P}(\sim)=\left\{A_{i}: i \in I\right\}$, where $x_{1} \sim x_{2}$ iff $x_{1}, x_{2} \in A_{i}$ for some $i \in I$. The equivalence relation $\sim^{\prime}=\sim(\mathcal{P}(\sim))$ is then defined by $x_{1} \sim^{\prime} x_{2}$ iff $x_{1}, x_{2} \in A_{i}$ for some $i \in I$, which says that $\sim^{\prime}=\sim$, that is $\sim(\mathcal{P}(\sim))=\sim$.

If we begin with a partition $\mathcal{P}=\left\{A_{i}: i \in I\right\}$, then $\sim(\mathcal{P})$ is the equivalence relation \sim^{\prime} defined by $x_{1} \sim^{\prime} x_{2}$ iff $x_{1}, x_{2} \in A_{i}$ for some $i \in I$, and then clearly $\mathcal{P}\left(\sim^{\prime}\right)=\mathcal{P}$. This says that $\mathcal{P}(\sim(\mathcal{P}))=\mathcal{P}$.

Solutions to Chapter 3 exercises

3.1 Suppose that $y \in f(A)$. Then $y=f(a)$ for some $a \in A$. Since $A \subseteq B$, also $a \in B$ so $y=f(a) \in f(B)$. By definition, $f(B) \subseteq Y$. This shows that $f(A) \subseteq f(B) \subseteq Y$.

Suppose that $x \in f^{-1}(C)$. Then $f(x) \in C$, so since $C \subseteq D$ also $f(x) \in D$. Hence $x \in f^{-1}(D)$. By definition $f^{-1}(D) \subseteq X$. This shows that $f^{-1}(C) \subseteq f^{-1}(D) \subseteq X$.
3.2 We see, either from a sketch or arguing analytically, that

$$
\begin{gathered}
f([0, \pi / 2])=[0,1], \quad f([0, \infty))=[-1,1], \quad f^{-1}([0,1])=\bigcup_{n \in \mathbb{Z}}[2 n \pi,(2 n+1) \pi], \\
f^{-1}([0,1 / 2])=\bigcup_{n \in \mathbb{Z}}([2 n \pi,(2 n+1 / 3) \pi] \cup[(2 n+2 / 3) \pi,(2 n+1) \pi]), \quad f^{-1}([-1,1])=\mathbb{R} .
\end{gathered}
$$

3.3 First suppose that $x \in(g \circ f)^{-1}(U)$. Then $g(f(x))=(g \circ f)(x) \in U$. Hence by definition of inverse images, $f(x) \in g^{-1}(U)$, and again by definition $x \in f^{-1}\left(g^{-1}(U)\right)$. This shows that $(g \circ f)^{-1}(U) \subseteq f^{-1}\left(g^{-1}(U)\right)$.

Now suppose $x \in f^{-1}\left(g^{-1}(U)\right)$. Then $f(x) \in g^{-1}(U)$, so $g(f(x)) \in U$, that is $(g \circ f)(x) \in U$, and by definition of inverse images, $x \in(g \circ f)^{-1}(U)$. Hence $f^{-1}\left(g^{-1}(U)\right) \subseteq(g \circ f)^{-1}(U)$.

These together show that $(g \circ f)^{-1}(U)=f^{-1}\left(g^{-1}(U)\right)$.
3.4 We see that
$f([0,1])=\{(x, 2 x): x \in[0,1]\}$, which is the straight line segment in \mathbb{R}^{2} joining the origin to the point with coordinates $(1,2)$.

We see that $(x, 2 x) \in[0,1] \times[0,1]$ iff $0 \leqslant x \leqslant 1 / 2$, so $f^{-1}([0,1] \times[0,1])=[0,1 / 2]$.
We see that $(x, 2 x) \in D$ iff $x \in \mathbb{R}$ and $x^{2}+(2 x)^{2} \leqslant 1$, which holds iff $5 x^{2} \leqslant 1$, so $f^{-1}(D)=[-1 / \sqrt{5}, 1 / \sqrt{5}]$.
3.5 We know from Proposition 3.14 in the book that if $f: X \rightarrow Y$ is onto and $C \subseteq Y$ then $f\left(f^{-1}(C)\right)=C$.

Suppose that $f: X \rightarrow Y$ is such that $f\left(f^{-1}(C)\right)=C$ for any subset C of Y. For any $y \in Y$ we can put $C=\{y\}$, and get that $f\left(f^{-1}(y)\right)=\{y\}$. This tells us that there exists $x \in f^{-1}(y)$ (for which of course $f(x)=y$) so $f^{-1}(y) \neq \emptyset$. This proves that f is onto. $A \subseteq X$. Suppose that f is injective and let $x \in f^{-1}(f(A))$. Then $f(x) \in f(A)$ so $f(x)=f(a)$ for some $a \in A$. But f is injective so $x=a$. This proves that $f^{-1}(f(A)) \subseteq A$, and together these give $A=f^{-1}(f(A))$.

Now suppose that $A=f^{-1}(f(A))$ for any $A \subseteq X$. For any $x \in X$ take $A=\{x\}$ and we get $\{x\}=f^{-1}(f(x))$. this says that if $f\left(x^{\prime}\right)=f(x)$ then $x^{\prime}=x$, that is f is injective.
3.7 (i) We can have $y \neq y^{\prime}$ with neither y nor y^{\prime} in the image of f, so that $f^{-1}(y)=f^{-1}\left(y^{\prime}\right)=\emptyset$. For a concrete counterexample, define $f:\{0\} \rightarrow\{0,1,2\}$ by $f(0)=0$ and take $y=1, y^{\prime}=2$.
(ii) Suppose that $f: X \rightarrow Y$ is onto and $y, y^{\prime} \in Y$ with $y \neq y^{\prime}$. Then $f^{-1}(y) \neq f^{-1}\left(y^{\prime}\right)$; for if $f^{-1}(y)=f^{-1}\left(y^{\prime}\right)$, then there exists $x \in f^{-1}(y)=f^{-1}\left(y^{\prime}\right)$ since f is onto. This gives the contradiction $y=f(x)=y^{\prime}$.
3.8 We know from Proposition 3.9 in the book that $f(A) \backslash f(B) \subseteq f(A \backslash B)$ for any subsets A, B of X.

Suppose first that also $f(A \backslash B) \subseteq f(A) \backslash f(B)$. Then if $y \in f(A \backslash B)$ we know that $y \notin f(B)$. Hence $f(A \backslash B) \cap f(B)=\emptyset$.

Conversely suppose that $f(A \backslash B) \cap f(B)=\emptyset$. Let $y \in f(A \backslash B)$. Then $y \notin f(B)$. Also, $y=f(x)$ for some $x \in A \backslash B$. Thus $y \in f(A)$, but $y \notin f(B)$, so $y \in f(A) \backslash f(B)$. This proves that $f(A \backslash B) \subseteq f(A) \backslash f(B)$, and together with the opening remark we have $f(A \backslash B)=f(A) \backslash f(B)$.

If $f(A \backslash B) \cap f(B) \neq \emptyset$, let $y \in f(A \backslash B) \cap f(B)$. Then $y=f(x)$ for some $x \in A \backslash B$ and also $y=f\left(x^{\prime}\right)$ for some $x^{\prime} \in B$, and we have $x^{\prime} \neq x$, so f is not injective. Hence if f is injective then $f(A \backslash B) \cap f(B)=\emptyset$ and $f(A \backslash B)=f(A) \backslash f(B)$ by the first part of the question.
3.9 (a) Suppose that $y \in f(A) \cap C$. Then $y \in C$, and $y=f(x)$ for some $x \in A$. Then $x \in f^{-1}(C)$, so $x \in A \cap f^{-1}(C)$ and $y=f(x) \in f\left(A \cap f^{-1}(C)\right)$. Hence $f(A) \cap C \subseteq f\left(A \cap f^{-1}(C)\right)$.

Conversely suppose $y \in f\left(A \cap f^{-1}(C)\right)$. Then $y=f(x)$ for some $x \in A \cap f^{-1}(C)$. Then $y \in f(A)$ since $x \in A$ and $y=f(x) \in C$ since $x \in f^{-1}(C)$. Hence $f\left(A \cap f^{-1}(C)\right) \subseteq f(A) \cap C$.

Together these show that $f(A) \cap C=f\left(A \cap f^{-1}(C)\right)$.
(b) We apply (a) with $C=f(B)$. This tells us that $f(A) \cap f(B)=f\left(A \cap f^{-1}(f(B))\right)$, so since $f^{-1}(f(B))=B$ we have $f(A) \cap f(B)=f(A \cap B)$.
3.10 Each $f^{-1}(y)$ for $y \in Y$ is non-empty since f is onto. If $y, y^{\prime} \in Y$ with $y \neq y^{\prime}$ then we can see that $f^{-1}(y) \cap f^{-1}\left(y^{\prime}\right)=\emptyset$ since if $x \in f^{-1}(y) \cap f^{-1}\left(y^{\prime}\right)$ then $y=f(x)=y^{\prime}$, contradicting the hypothesis. Finally, $\bigcup_{y \in Y} f^{-1}(y)=X$ by Proposition 3.7 in the book, since $\bigcup_{y \in Y}\{y\}=Y$.

