Chapter 1

Introduction

Exercise 1.1

Let $A \in \mathbb{S}^{m}$. Show that for arbitrary $M \in \mathbb{R}^{m \times n}, A \leq 0$ implies $M^{T} A M \leq 0$.
Solution I. Since $A \leq 0$, we have

$$
y^{\mathrm{T}} A y \leq 0, \forall y \in \mathbb{R}^{m} .
$$

Therefore, for arbitrary $x \in \mathbb{R}^{n}$ and $M \in \mathbb{R}^{m \times n}$, there holds

$$
x^{\mathrm{T}} M^{\mathrm{T}} A M x=(M x)^{\mathrm{T}} A M x \leq 0 .
$$

This completes the proof.
Solution II. Since $A \leq 0$, there exists a matrix $T \in \mathbb{R}^{m \times m}$ such that

$$
A=-T^{\mathrm{T}} T .
$$

Therefore, for arbitrary $M \in \mathbb{R}^{m \times n}$, there holds

$$
M^{\mathrm{T}} A M=-(T M)^{\mathrm{T}}(T M) \leq 0 .
$$

This completes the proof.
Remark. On the other side, if for arbitrary $M \in \mathbb{R}^{m \times n}$, there holds $M^{\mathrm{T}} A M \leq 0$, we can simply choose $M=I$, the identity, and obtain $A \leq 0$. Therefore, we actually have the conclusion that $A \leq 0$ if and only if $M^{\mathrm{T}} A M \leq 0$ for arbitrary $M \in \mathbb{R}^{m \times n}$.

Exercise 1.2 (Duan and Patton (1998), Zhang and Yang (2003), page 175)
Let $A \in \mathbb{C}^{n \times n}$. Show that A is Hurwitz stable if $A+A^{\mathrm{H}}<0$.

Solution. First, we remark that, like the case for a real matrix, a complex square matrix is called Hurwitz stable if all its eigenvalues have negative real parts. Let λ be an eigenvalue of A, x be a corresponding eigenvector, then we have

$$
A x=\lambda x
$$

and further

$$
x^{\mathrm{H}}\left(A^{\mathrm{H}}+A\right) x=(\lambda+\bar{\lambda}) x^{\mathrm{H}} x .
$$

Thus $A^{\mathrm{H}}+A<0$ implies

$$
\operatorname{Re} \lambda(A)=\frac{\lambda+\bar{\lambda}}{2}<0 .
$$

This completes the proof.

Exercise 1.3 (Duan and Patton (1998))
Let $A \in \mathbb{R}^{n \times n}$. Show that A is Hurwitz stable if and only if

$$
\begin{equation*}
A=P Q \tag{s1.1}
\end{equation*}
$$

with $P>0$ and Q being some matrix satisfying $Q+Q^{\mathrm{T}}<0$.
Solution. Suppose $A=P Q$ holds with $P>0$ and Q satisfying

$$
\begin{equation*}
Q+Q^{\mathrm{T}}<0 \tag{s1.2}
\end{equation*}
$$

Let

$$
\hat{P}=P^{-1}>0,
$$

then it is easy to see

$$
A^{\mathrm{T}} \hat{P}+\hat{P} A=Q+Q^{\mathrm{T}}<0 .
$$

Therefore, the matrix A is Hurwitz stable.
Conversely, if A is Hurwitz stable, then there exists a matrix $\hat{P}>0$, such that

$$
\begin{equation*}
A^{\mathrm{T}} \hat{P}+\hat{P} A<0 \tag{s1.3}
\end{equation*}
$$

Let

$$
Q=\hat{P} A
$$

we can easily get (s1.1), with $P=\hat{P}^{-1}>0$, and the matrix Q obviously satisfies (s1.2) because of (s1.3).

Exercise 1.4

Give an example to show that certain set of nonlinear inequalities can be converted into LMIs.

Solution. Let $Q(x)=Q^{\mathrm{T}}(x), R(x)=R^{\mathrm{T}}(x)$ and $S(x)$ depend affinely on x. It is clearly that

$$
Q(x)-S(x) R(x)^{-1} S^{\mathrm{T}}(x)>0, R(x)>0
$$

is quadratic with respect to $S(x)$. Using Schur completion lemma the above two relations can be equivalently converted into

$$
\left[\begin{array}{cc}
Q(x) & S(x) \\
S^{\mathrm{T}}(x) & R(x)
\end{array}\right]>0,
$$

which is now linear in $S(x)$.

Exercise 1.5

Verify for which integer i the following inequality is true:

$$
\left[\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right]>\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Solution I. Let

$$
\Theta=\left[\begin{array}{ll}
1 & i \tag{s1.4}\\
i & 1
\end{array}\right]-\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
1 & i-1 \\
i-1 & 1
\end{array}\right]
$$

then we know

$$
\begin{gathered}
s I-\Theta=\left[\begin{array}{cc}
s-1 & -i+1 \\
-i+1 & s-1
\end{array}\right] \\
\operatorname{det}(s I-\Theta)=(s-1)^{2}-(i-1)^{2}=(s-i)(s+i-2) .
\end{gathered}
$$

Thus

$$
\lambda(\Theta)=\{i, 2-i\},
$$

which indicates $\Theta>0$ if and only if $i=1$. Therefore the conclusion holds if and only if $i=1$.

Solution II. It follows from (s1.4) and the Schur complement lemma that $\Theta>0$ if and only if

$$
1-(i-1)^{2}>0
$$

which is equivalent to

$$
(i-1)^{2}<1
$$

Obviously, this holds if and only if $i=1$.

Exercise 1.6

Consider the combined constraints (in the unknown x) of the form

$$
\left\{\begin{array}{l}
F(x)<0 \tag{s1.5}\\
A x=a
\end{array},\right.
$$

where the affine function $F: \mathbb{R}^{n} \rightarrow \mathbb{S}^{m}$, matrix $A \in \mathbb{R}^{m \times n}$ and vector $a \in \mathbb{R}^{m}$ are given, and the equation $A x=a$ has a solution. Show that (s1.5) can be converted into an LMI.

Solution. Suppose $\operatorname{rank} A=r$, then it is well-known that all the solution vectors of the equation $A x=a$ constitute a manifold, of dimension r, in \mathbb{R}^{n}, and a general form of all the solutions can be written as

$$
x=x_{0}+z_{1} e_{1}+z_{2} e_{2}+\cdots+z_{r} e_{r},
$$

where x_{0} is a particular solution to the matrix equation $A x=a$, while $e_{1}, e_{2}, \ldots, e_{r}$ are a set of linearly independent solutions to the homogeneous equation $A x=0$, and $z_{i}, i=1,2, \ldots, r$, are a series of arbitrary scalars.

Let

$$
\begin{aligned}
x & =\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]^{\mathrm{T}}, \\
x_{0} & =\left[\begin{array}{llll}
x_{1}^{0} & x_{2}^{0} & \cdots & x_{n}^{0}
\end{array}\right]^{\mathrm{T}}, \\
e_{i} & =\left[\begin{array}{llll}
e_{1 i} & e_{2 i} & \cdots & e_{n i}
\end{array}\right]^{\mathrm{T}}, i=1,2, \ldots, r,
\end{aligned}
$$

then the components of vector x can be written as

$$
\begin{equation*}
x_{j}=x_{j}^{0}+z_{1} e_{j 1}+z_{2} e_{j 2}+\cdots+z_{r} e_{j r}, j=1,2, \ldots, n, \tag{s1.6}
\end{equation*}
$$

and the affine function F can be expressed as

$$
\begin{equation*}
F(x)=F_{0}+x_{1} F_{1}+x_{2} F_{2}+\cdots+x_{n} F_{n} . \tag{s1.7}
\end{equation*}
$$

Substituting (s1.6) into (s1.7), yields,

$$
\begin{aligned}
F(x)= & F_{0}+\left(x_{1}^{0}+z_{1} e_{11}+z_{2} e_{12}+\cdots+z_{r} e_{1 r}\right) F_{1} \\
& +\left(x_{2}^{0}+z_{1} e_{21}+z_{2} e_{22}+\cdots+z_{r} e_{2 r}\right) F_{2} \\
& +\cdots+\left(x_{n}^{0}+z_{1} e_{n 1}+z_{2} e_{n 2}+\cdots+z_{r} e_{n r}\right) F_{n} \\
= & F_{0}+x_{1}^{0} F_{1}+\cdots+x_{n}^{0} F_{n} \\
& +z_{1}\left(e_{11} F_{1}+e_{21} F_{2}+\cdots+e_{n 1} F_{n}\right) \\
& +\cdots+z_{r}\left(e_{1 r} F_{1}+e_{2 r} F_{2}+\cdots+e_{n r} F_{n}\right) .
\end{aligned}
$$

Put

$$
\begin{aligned}
& \widetilde{F}_{0}=F_{0}+x_{1}^{0} F_{1}+\cdots+x_{n}^{0} F_{n}, \\
& \widetilde{F}_{i}=e_{1 i} F_{1}+e_{2 i} F_{2}+\cdots+e_{n i} F_{n}, i=1,2, \ldots, r, \\
& z=\left[\begin{array}{llll}
z_{1} & z_{2} & \cdots & z_{r}
\end{array}\right]^{\mathrm{T}},
\end{aligned}
$$

we finally have

$$
F(x)=\widetilde{F}_{0}+z_{1} \widetilde{F}_{1}+\cdots+z_{r} \widetilde{F}_{r} \triangleq \widetilde{F}(z)
$$

This implies that $x \in \mathbb{R}^{n}$ satisfies (1.22) if and only if $\widetilde{F}(z)<0, z \in \mathbb{R}^{r}$.

Exercise 1.7

Write the Hermite matrix $A \in \mathbb{C}^{n \times n}$ as $X+i Y$ with real X and Y. Show that $A<0$ only if $X<0$.

Solution. Considering the conjugate symmetry of matrix A, we know that

$$
X^{\mathrm{T}}=X, \quad Y^{\mathrm{T}}=-Y
$$

Therefore, for arbitrary $z \in \mathbb{R}^{n}$, we have

$$
\left(z^{\mathrm{T}} Y z\right)^{\mathrm{T}}=z^{\mathrm{T}} Y^{\mathrm{T}} z=-\left(z^{\mathrm{T}} Y z\right),
$$

which results in

$$
\begin{equation*}
z^{\mathrm{T}} Y z=0, \forall z \in \mathbb{R}^{n} \tag{s1.8}
\end{equation*}
$$

Using the above relation, we further have

$$
\begin{align*}
z^{\mathrm{T}}(X+i Y) z & =z^{\mathrm{T}} X z+i z^{\mathrm{T}} Y z \\
& =z^{\mathrm{T}} X z \tag{s1.9}
\end{align*}
$$

When $A<0$, we have

$$
z^{\mathrm{T}}(X+i Y) z<0, \forall z \in \mathbb{R}^{n}, z \neq 0
$$

this, together with (s1.9), implies

$$
z^{\mathrm{T}} X z<0, \forall z \in \mathbb{R}^{n}, z \neq 0 .
$$

This gives the negative definiteness of X.

Exercise 1.8

Let A, B be symmetric matrices of the same dimension. Show

1. $A>B$ implies $\lambda_{\max }(A)>\lambda_{\max }(B)$,
2. $\lambda_{\max }(A+B) \leq \lambda_{\max }(A)+\lambda_{\max }(B)$.

Solution. Let $M \in \mathbb{S}^{n}, \lambda_{\max }(M)$ be the maximum eigenvalue of matrix M. We can easily show that

$$
\lambda_{\max }(M) I \geq M .
$$

Then, there holds

$$
\begin{equation*}
\lambda_{\max }(M) x^{\mathrm{T}} x \geq x^{\mathrm{T}} M x, \quad \forall x \in \mathbb{R}^{n} . \tag{s1.10}
\end{equation*}
$$

Proof of conclusion 1

Let x be the eigenvector of matrix B corresponding to the eigenvalue $\lambda_{\max }(B)$, then

$$
B x=\lambda_{\max }(B) x
$$

Considering $A>B$, we have

$$
x^{\mathrm{T}}(A-B) x>0,
$$

which means

$$
\begin{equation*}
x^{\mathrm{T}} A x>x^{\mathrm{T}} B x=\lambda_{\max }(B) x^{\mathrm{T}} x . \tag{s1.11}
\end{equation*}
$$

On the other hand, using (s1.10) and (s1.11), gives

$$
\lambda_{\max }(A) x^{\mathrm{T}} x>\lambda_{\max }(B) x^{\mathrm{T}} x
$$

which implies $\lambda_{\max }(A)>\lambda_{\max }(B)$, in view of $x^{\mathrm{T}} x>0, x \neq 0$.

Proof of conclusion 2

Let x be the eigenvector of matrix $A+B$ corresponding to the eigenvalue $\lambda_{\text {max }}(A+$ $B)$, then

$$
\lambda_{\max }(A+B) x=(A+B) x,
$$

from which we have

$$
\begin{equation*}
\lambda_{\max }(A+B) x^{\mathrm{T}} x=x^{\mathrm{T}} A x+x^{\mathrm{T}} B x . \tag{s1.12}
\end{equation*}
$$

Using (s1.10) again, we obtain

$$
\begin{equation*}
x^{\mathrm{T}} A x \leq \lambda_{\max }(A) x^{\mathrm{T}} x, x^{\mathrm{T}} B x \leq \lambda_{\max }(B) x^{\mathrm{T}} x . \tag{s1.13}
\end{equation*}
$$

Combining (s1.12) with (s1.13), yields

$$
\lambda_{\max }(A+B) x^{\mathrm{T}} x \leq\left(\lambda_{\max }(A)+\lambda_{\max }(B)\right) x^{\mathrm{T}} x
$$

which clear implies, in view of $x^{\mathrm{T}} x>0, x \neq 0$, the relation to be proven.

