
51 Problems

Problems

1.1 Show that, for s to be proper complex, its in-phase and quadrature components must
be uncorrelated and have the same variance.

Solution

As defined in Appendix C.1.4, proper complexity entails E[s2] = E[s]2. Letting
s = si + jsq, this corresponds to

E[s2
i ]− E[s2

q] + 2jE[sisq] = E[si]
2 − E[sq]2 + 2jE[si]E[sq], (1.257)

which can be split into twin conditions for the real and imaginary parts, respectively

E[s2
i ]− E[s2

q] = E[si]
2 − E[sq]2 (1.258)

and

E[sisq] = E[si]E[sq]. (1.259)

Condition (1.258) can be rearranged into var[si] = var[sq] while condition (1.259)
amounts to si and sq being uncorrelated.

If s were a vector, then the above conditions would generalize to Rsi = Rsq and
Rsisq = −RT

sisq . The real and imaginary vectors need not be uncorrelated, only
for each entry do the real and imaginary parts need to be uncorrelated (because the
diagonal ofRsisq does need to be zero for the conditionRsisq = −RT

sisq to hold).

1.2 Let s conform to a 3-PSK constellation defined by s0 = 1√
2
(1−j), s1 = 1√

2
(−1−j),

and s2 = j. Is this signal proper complex? Is it circularly symmetric?

Solution

This zero-mean ternary signal is not proper complex because E[s]2 = 0 whereas
E[s2] = −1/3. Referring to Problem 1.1, with s = si + jsq, in the ternary signal
at hand the in-phase and quadrature components are uncorrelated, but var[si] = 1/3

while var[sq] = 2/3.
The signal is not circularly symmetric either because a rotation thereof will result

in a constellation with differently positioned points. Only rotations of±120◦ degrees
would yield an equivalent constellation.

1.3 Let s conform to a ternary constellation defined by s0 = −1, s1 = 0, and s2 = 1. Is
this signal proper complex? Is it circularly symmetric?
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52 A primer on information theory and MMSE estimation

Solution

This zero-mean ternary signal is not proper complex because E[s]2 = 0 whereas
E[s2] = 2/3. Referring to Problem 1.1, in the ternary signal at hand, var[si] = 2/3

while var[sq] = 0.
The signal is not circularly symmetric either because a rotation thereof will result

in a constellation with differently positioned points. Only a rotation of 180◦ degrees
would yield an equivalent constellation.

1.4 Give an expression for the minimum distance between neighboring points in a one-
dimensional constellation featuring M points equidistant along the real axis.

Solution

Such M -PAM constellation (with BPSK as special case for M = 2) is described by
{

(2m+ 1−M)
dmin

2

}
m = 0, . . . ,M − 1, (1.260)

from which, by imposing that the variance be unity,

dmin = 2

√
3

M2 − 1
. (1.261)

1.5 Let x be a discrete random variable and let y = g(x) with g(·) an arbitrary function.
IsH(y) larger or smaller thanH(x)?

Solution

Since H(·) quantities the uncertainty in a random variable, H(y) ≤ H(x) with
equality if every value of x maps to a distinct value of y, and with strict inequality if
multiple values of x map to the same value of y.

1.6 Express the entropy of a discrete random variable x as a function of the information
divergence between x and a uniformly distributed counterpart.

Solution

Let D be the information divergence between x some other another random variable
that takes M values equiprobably. Then, from (1.34),

D =
∑

x

px(x) log2 px(x)−
∑

x

px(x) log2

1

M
(1.262)

= −H(x) + log2M. (1.263)
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It follows that

H(x) = log2M −D. (1.264)

1.7 Express the differential entropy of a real Gaussian variable x ∼ N (µ, σ2).

Solution

Invoking the PDF in (C.13),

h(x) = −E
[

log2 fx(x)
]

(1.265)

= E
[

(x− µ)2

2σ2

]
log2 e− log2

1√
2πσ

(1.266)

=
1

2
log2 e+

1

2
log2(2πσ2) (1.267)

and thus

h(x) =
1

2
log2(2πeσ2). (1.268)

1.8 Compute the differential entropy of a random variable that takes the value 0 with
probability 1/3 and is otherwise uniformly distributed in the interval [−1, 1].

Solution

The differential entropy of a discrete random variable (or, as in this case, a mixed
random variable having a discrete component) is −∞. To see that, notice that the
density of discrete mass points can be represented by delta functions. Since a delta
function can be obtained from a uniform random variable by allowing the support
to vanish, we can refer to Example 1.4 and let b → 0, which makes the differential
entropy grow unboundedly negative.

As advanced in the text, care must be exercised when dealing with differential
entropies.

1.9 Calculate the differential entropy of a random variable x that abides by the exponen-
tial distribution

fx(x) =
1

µ
e−x/µ. (1.269)
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Solution

Applying the definition of differential entropy,

h = −E[log2 fx(x)] (1.270)

=
1

µ

∫ ∞

0

e−x/µ
(
x

µ
+ log2 µ

)
dx (1.271)

=
1

µ2

∫ ∞

0

x e−x/µdx+
log2 µ

µ

∫ ∞

0

e−x/µdx (1.272)

= − 1

µ2
· µ (x+ µ) e−x/µ

∣∣∣
∞

0
− log2 µ · e−x/µ

∣∣∣
∞

0
(1.273)

= − 1

µ
· (x+ µ) e−x/µ

∣∣∣
∞

0
+ log2 µ (1.274)

= 1 + log2 µ. (1.275)

1.10 Consider a random variable s such that <{s} ∼ N (0, 1/2) and ={s} = q<(s)

where q = ±1 equiprobably. Compute the differential entropy of s, which is com-
plex and Gaussian but not proper, and compare it with that of a standard complex
Gaussian.

Solution

Since s is zero-mean and E[s2] = 0, the variable is indeed proper complex. Its
PDF is singular, meaning that its support has zero area on the complex plane; it is
supported only on the axes <{s} = ={s} and <{s} = −={s}. The distribution is
thus invariant to rotations of ±90◦ and 180◦, but not to arbitrary rotations, hence it
is not circularly symmetric. Moreover, the distribution clearly does not conform to
(C.14), indicating that s is not complex Gaussian; precisely, its real and imaginary
parts are not jointly Gaussian, even if s|q = 1 and s|q = −1 are Gaussian. The real
and imaginary parts of s are also not independent.

Because of the singularity of the PDF, the differential entropy is h(s) = −∞. This
is the case for any distribution having zero area on the complex plane, something
that can be seen by starting with a uniform distribution supported on the rectangle
[−a/2, a/2] × [−b/2, b/2] and letting either a or b vanish. The differential entropy
of such uniformly distributed variable equals log2(ab), which diverges if either a or
b vanish.

Once more we find that the differential entropy is a quantity to be careful with,
yet, as emphazised in the text, the mutual information is always well behaved. To
see that, consider y =

√
10s+ z with z ∼ NC(0, 1) and let us compute I(s; y). Al-

though not easily tackled analytically, we can compute it numerically, with the side
benefit of illustrating the computation of mutual informations numerically by means
of histograms. Using the script mutual info.m and the function chist.m, from
which I(s; y) = 2.83 bits. In contrast, for s′ ∼ NC(0, 1), we would have I(s′; y) =
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log2(1 + 10) = 3.46, confirming that s has a rather reduced information-carrying
ability relative to a proper complex Gaussian counterpart because of the strong de-
pendence between the in-phase and quadrature components of s.

1.11 Prove that h(x+ a) = h(x) for any constant a.

Solution

The PDF of y = x + a equals fy(y) = fx(y − a). Applying the definition of
differential entropy,

h(y) = −
∫
fy(y) log2 fy(y) dy (1.276)

= −
∫
fx(y − a) log2 fx(y − a) dy (1.277)

= −
∫
fx(x) log2 fx(x) dx (1.278)

= h(x) (1.279)

where, in (1.278), we applied the change of variables y = x + a.

1.12 Prove that h(ax) = h(x) + log2 |a| for any constant a.

Solution

Consider first the case a > 0. Applying (C.11), the PDF of y = ax equals

fy =
fx(y/a)

a
(1.280)

from which

h(y) = −
∫ ∞

−∞
fy(y) log2 fy(y) dy (1.281)

= −1

a

∫ ∞

−∞
fx(y/a) log2

fx(y/a)

a
dy. (1.282)

Applying the change of variables y = ax,

h(y) = −
∫ ∞

−∞
fx(x) log2 fx(x) dx+

∫ ∞

−∞
fx(x) log2(a) dx (1.283)

= h(x) + log2 a. (1.284)

Conversely, for a < 0, fy = − fx(y/a)
a and

h(y) =
1

a

∫ ∞

−∞
fx(y/a) log2

−fx(y/a)

a
dy (1.285)
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=

∫ −∞

∞
fx(x) log2 fx(x) dx−

∫ −∞

∞
fx(x) log2(−a) dx (1.286)

= −
∫ ∞

−∞
fx(x) log2 fx(x) dx+

∫ ∞

−∞
fx(x) log2(−a) dx (1.287)

= h(x) + log2(−a). (1.288)

Altogether,

h(x+ a) = h(x) + log2 |a|. (1.289)

1.13 Express the differential entropy of the real Gaussian vector x ∼ N (µ,R).

Solution

Using

fx(x) =
1√

det(2πR)
e−

1
2 (x−µ)TR−1(x−µ) (1.290)

we obtain

h(x) = −E
[

log2 fx(x)
]

(1.291)

= log2

√
det(2πR) +

1

2
E
[
(x− µ)TR−1(x− µ)

]
log2 e (1.292)

=
1

2
log2 det(2πR) +

1

2
tr
(
E
[
(x− µ)TR−1(x− µ)

])
log2 e (1.293)

=
1

2
log2 det(2πR) +

1

2
tr
(
E
[
R−1(x− µ)(x− µ)T

])
log2 e (1.294)

=
1

2
log2 det(2πR) +

1

2
tr
(
R−1E

[
(x− µ)(x− µ)T

])
log2 e (1.295)

=
1

2
log2 det(2πR) +

1

2
tr(I) log2 e (1.296)

=
1

2
log2 det(2πeR). (1.297)

1.14 Consider the first-order Gauss–Markov process

h[n] =
√

1− ε h[n− 1] +
√
εw[n] (1.298)

where {w[n]} is a sequence of IID random variables with w ∼ NC(0, 1).
(a) Express the entropy rate as a function of ε.
(b) Quantify the entropy rate for ε = 10−3.
Note: The Gauss–Markov process underlies a fading model presented in Chapter 3.

Solution
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(a) First, let us verify whether {h[n]} is stationary. Its expected value at time N
satisfies E[h[N ]] = (1 − ε)N/2E[h[0]] and, since (1 − ε) < 1, the effect of any
nonzero initial value vanishes as N → ∞ and the process becomes zero-mean
in steady state. As far as the correlation,

E
[
h[n]h∗[n+m]

]
= (1− ε)m ∀n. (1.299)

Hence, the mean and correlation are independent of n and the process is wide-
sense stationary. And, being Gaussian, it is then (strict-sense) stationary. It fol-
lows that we can compute the differential entropy rate as

h = h(h[n] |h[n− 1]) (1.300)

= h(
√
εw), (1.301)

where we have exploited the first-order nature of the process to curtail the con-
ditioning to h[n−1], without the need for earlier values. Recalling Example 1.5,
the above gives

h = log2(πeε). (1.302)

(b) For ε = 10−3, h = −6.87. Its finite value confirms the intuition that the process
is regular.

1.15 Verify (1.79) and (1.80).
Hint: Express det(·) as the product of the eigenvalues of its argument.

Solution

Denoting by λj(·) the jth eigenvalue of a matrix,

loge det(I + ρB) = loge
∏

j

λj(I + ρB) (1.303)

= loge
∏

j

(1 + ρλj(B)) (1.304)

=
∑

j

loge(1 + ρλj(B)), (1.305)

from which

∂

∂ρ
loge det(I + ρB) =

∑

j

λj(B)

1 + ρλj(B)
(1.306)

and

∂

∂ρ
loge det(I + ρB)

∣∣∣∣
ρ=0

=
∑

j

λj(B) (1.307)

= tr(B). (1.308)
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In turn,

∂2

∂ρ2
loge det(I + ρB) = −

∑

j

λ2
j (B)

1 + ρλ2
j (B)

(1.309)

and

∂2

∂ρ2
loge det(I + ρB)

∣∣∣∣
ρ=0

= −
∑

j

λ2
j (B) (1.310)

= −tr(B2). (1.311)

1.16 Show that I(x0;x1; y) ≥ I(x0; y) for any random variables x0, x1, and y.

Solution

Applying the chain rule of mutual information,

I(x0, x1; y) = I(x0; y) + I(x1; y |x0) (1.312)

and, since I(x1; y |x0) ≥ 0 (because no mutual information can be strictly negative),
it holds that I(x0, x1; y) ≥ I(x0; y).

1.17 Let y =
√
ρ (s0 + s1) + z where s0, s1, and z are independent standard complex

Gaussian variables.
(a) Show that I(s0, s1; y) = I(s;

√
ρAs+ z) for s = [s0 s1]T and a suitableA.

(b) Characterize I(s0, s1; y) − I(s0; y) and approximate its limiting behaviors for
ρ� 1 and ρ� 1.

(c) Repeat part (b) for the case that s0 and s1 are partially correlated. What do you
observe?

(d) Repeat part (b) for the modified relationship y =
√
ρ/2 (s0 + s1) + z.

Can you draw any conclusion related to MIMO from this problem?

Solution

(a) Since we want s0 and s1 to add up, what we need isA = [1 1]. This gives

I(s;
√
ρAs+ z) = I(s;

√
ρ (s0 + s1) + z) (1.313)

= I(s0, s1;
√
ρ (s0 + s1) + z). (1.314)

(b) Applying the chain rule of mutual information,

I(s0, s1; y) = I(s0; y) + I(s1; y |s0) (1.315)

where I(s0; y) corresponds to the transmission of s0 ∼ NC(0, 1) over a channel
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with power gain ρ in the face of noise z +
√
ρs1 ∼ NC(0, 1 + ρ); the SNR is

thus ρ/(1 + ρ) and, applying Example 1.7, we find that

I(s0; y) = log2(1 + SNR) (1.316)

= log2

(
1 +

ρ

1 + ρ

)
(1.317)

= log2

(
1 + 2ρ

1 + ρ

)
. (1.318)

In turn, I(s1; y |s0) corresponds to the transmission of s0 +s1 ∼ NC(s0, 1) over
a channel with power gain ρ in the face of noise z ∼ NC(0, 1); the SNR is ρ and
s0 is immaterial, such that

I(s1; y |s0) = log(1 + ρ). (1.319)

Altogether, (1.315) equals

I(s0, s1; y) = log2

(
1 + 2ρ

1 + ρ

)
+ log2(1 + ρ) (1.320)

= log2(1 + 2ρ). (1.321)

The above result can be obtained more expeditiously by capitalizing on part (a)
of the problem and Example 1.13. Since s ∼ NC(0, I),

I(s; y) = log2 det(1 + ρAIA∗) (1.322)

= log2(1 + ρ [1 1][1 1]T) (1.323)

= log2(1 + 2ρ). (1.324)

For ρ� 1,

I(s0, s1; y) ≈ 2ρ log2 e (1.325)

whereas, for ρ� 1,

I(s0, s1; y) ≈ 1 + log2 ρ. (1.326)

(c) Letting R = E[s0s
∗
1], we have that s ∼ NC(0,Rs) with

Rs =

[
1 R

R∗ 1

]
(1.327)

and (1.322) generalizes into

I(s; y) = log2 det(1 + ρARsA
∗) (1.328)

= log2 det
(
1 + 2ρ (1 + <{R})

)
, (1.329)

which is maximized for R = 1, i.e., with the same signal transmitted from both
antennas. This result is the seed of beamforming: when multiple antennas are
available only at the transmitter (MISO configurations), the optimum strategy is
to transmit a single signal and ensure its coherent combining at the receiver.
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(d) In this case, I(s; y) = log2(1 + ρ), which is the mutual information that would
be achieved if only s0 or s1 were transmitted.

The benefits of MISO over SISO emanate from an increase in the receive SNR,
either because of mere accumulation if every additional transmit signal contributes
its own additional power, or from coherent combining at the receiver. Multiple an-
tennas at both ends would be required to obtain more than a power gain, to obtain a
mutual information multiplier.

1.18 Let s be of unit variance and uniformly distributed on a disk while z ∼ NC(0, 1).
(a) What is the first-order expansion of I(ρ) = I(s;

√
ρs+ z) for small ρ?

(b) What is the leading term in the expansion of I(ρ) for large ρ?
Note: The signal distribution in this problem can be interpreted as a dense set of
concentric∞-PSK rings, conveying information in both phase and magnitude.

Solution

(a) The in-phase and quadrature components of s are independent and of equal vari-
ance, hence the signal is proper complex. (It is further circularly symmetric.) It
follows that its low-ρ expansion abides by (1.52), and the first-order expansion
specifically is I(ρ) = ρ log2 e+O(ρ2).

(b) As far as the leading term for high ρ is concerned, we can approximate the
mutual information in this regime as

I(ρ) = h(
√
ρs+ z)− h(z) (1.330)

≈ h(
√
ρs)− h(z) (1.331)

= h(
√
ρs)− log(πe), (1.332)

where (1.332) follows from z ∼ NC(0, 1).
For ∞-PSK,

√
ρs is uniformly distributed on a circle of length 2π

√
ρ, hence

f√ρs(s) = 1/(2π
√
ρ) for s over that circle and h(

√
ρs) = log2(2π

√
ρ). There-

fore, the leading term of (1.332) for large ρ is log2
√
ρ = 1

2 log2 ρ as established
in Example 1.8. This is only half what a complex Gaussian distribution attains
in this regime, the price of∞-PSK conveying information only in its phase and
being (despite its involving both the in-phase and quadrature components) a one-
dimensional distribution. Correcting this shortfall requires conveying informa-
tion also in the magnitude. Moreover, correcting the behavior for ρ → ∞ re-
quires an unbounded number of potential amplitudes, which is the idea behind
the signal distribution proposed in this problem.
Let s be uniformly distributed on a disk delimited by magnitudes A0 and A1.
Then,

f√ρs(s) =
1

πρ (A2
1 −A2

0)
|s| ∈ [A0, A1] (1.333)
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and

h(
√
ρs) =

∫ √ρA1

√
ρA0

∫ 2π

0

log2

(
πρ (A2

1 −A2
0)
)

πρ (A2
1 −A2

0)
|s|d|s|dφ(s) (1.334)

= 2
log2

(
πρ (A2

1 −A2
0)
)

ρ (A2
1 −A2

0)

|s|2
2

∣∣∣
√
ρA1

√
ρA0

(1.335)

= log2

(
πρ (A2

1 −A2
0)
)
. (1.336)

Therefore, the leading term of (1.332) for large ρ is log2 ρ, as with a complex
Gaussian signal. Although immaterial to this asymptote, the width of the disk
(i.e., the values of A0 and A1) do determine how soon this behavior sets in.
The next term in the expansion of I(ρ), the constant or zero-order term, is sure to
be negative so as to reflect the deficit with respect to the high-ρ mutual informa-
tion for an optimum complex Gaussian signal in (1.53). And, since a circular dis-
tribution is closer than a rectangular one to a complex Gaussian, for well-chosen
A0 and A1 this constant should fall between 0 and − log2(πe/6) = −0.51,
the value derived for∞-QAM in Example 1.9. Obtaining this constant exactly
would require an appropriate expansion of h(

√
ρs+ z), in lieu of h(

√
ρs).

1.19 Repeat Problem 1.18 with s conforming to a one-dimensional discrete constellation
featuring M points equidistant along a line forming an angle φ with the real axis.

Solution

Since the noise is circularly symmetric, when can apply any arbitrary rotation to the
signal, hence without loss of generality we can consider that φ = 0 and we are thus
faced with the same signal distribution of Problem 1.4, namely

{
(2m+ 1−M)

dmin

2

}
m = 0, . . . ,M − 1 (1.337)

with

dmin = 2

√
3

M2 − 1
. (1.338)

(a) This signal is one-dimensional, not proper complex. Hence, (1.52) need not ap-
ply, although as we see next the first-order term does hold.
With s abiding by (1.337), and letting y = yi + jyq,

fy(y) =
1

πM

M∑

m=1

e−|y−
√
ρsm|2 (1.339)

=
1

πM

M∑

m=1

e−(yi−√ρsm)2−y2
q (1.340)
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=
1

πM
e−(y2

i +y2
q)

M∑

m=1

e2
√
ρyism−ρs2

m (1.341)

=
1

πM
e−|y|

2
M∑

m=1

(
1 + 2

√
ρ yism +O(ρ)

)
(1.342)

=
1

π
e−|y|

2

(
1 +

2
√
ρ yi

M

M∑

m=1

sm +O(ρ)

)
(1.343)

=
1

π
e−|y|

2

+O(ρ) (1.344)

where the last equality follows from the zero-mean nature of s. The low-ρ dif-
ferential entropy of y is thus dominated by

−E
[
log2

(
1

π
e−|y|

2

)]
= E[|y|2] log2 e+ log2 π (1.345)

= E
[
|√ρs+ z|2

]
log2 e+ log2 π (1.346)

= (1 + ρ) log2 e+ log2 π (1.347)

= ρ log2 + log2(πe), (1.348)

meaning the first-order term of I(s; y) is

ρ log2 e+ log2(πe)− h(y|s) = ρ log2 e+ log2(πe)− h(z) (1.349)

= ρ log2 e+ log2(πe)− log2(πe) (1.350)

= ρ log2 e. (1.351)

(b) Combining (1.68) and (1.338), the leading term for large ρ is

log2M − ε (1.352)

with

log ε = − 3

M2 − 1
ρ+ o(ρ). (1.353)

1.20 Let s and z conform to BPSK distributions. Express I(ρ) = I(s;
√
ρs + z) and

obtain expansions thereof for small and large ρ. How much is I(ρ) for ρ = 5?

Solution

For ρ 6= 1,

y =





−1−√ρ with probability 1/4

−1 +
√
ρ with probability 1/4

1−√ρ with probability 1/4

1 +
√
ρ with probability 1/4

(1.354)
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such thatH(y) = 2. Thus,

I(s;
√
ρs+ z) = 2−H(y|s) (1.355)

= 2−H(z) (1.356)

= 2− 1 (1.357)

= 1 (1.358)

meaning that I(ρ) = 1 for ρ 6= 1. For ρ = 1,

y =





−2 with probability 1/4

0 with probability 1/2

2 with probability 1/4

(1.359)

such thatH(y) = 1.5. Thus, I(ρ) = 0.5 for ρ = 1. Altogether,

I(ρ) =





0 ρ = 0

0.5 ρ = 1

1 ρ > 0, ρ 6= 1,

(1.360)

which, interestingly, coincides for low and high ρ.

1.21 Compute I(s;
√
ρs+ z) with s ∼ NC(0, 1) and with z having a BPSK distribution.

Solution

The requested mutual information is given by

I(s;
√
ρs+ z) = h(

√
ρs+ z)− h(z) (1.361)

where h(
√
ρs+ z) could be expressed as a function of h(

√
ρy′) = h(y′) + log2

√
ρ

where y′ is the output of a channel with BPSK transmit signal, gain 1/
√
ρ, and

standard complex Gaussian noise. This would allow capitalizing on Example 1.10
to express h(

√
ρs + z). However, since z is discrete, its mutual information is—as

established in Problem 1.7—unboundedly negative and the mutual information is
thus infinite.

This should not be a surprising result, as an arbitrarily large number of distinct
signals drawn from a complex Gaussian distribution can be distinguished in the face
of noise that takes only two possible values. Hence, binary noise does not make a
dent in the information that a complex Gaussian signal can pack, which is infinite.

1.22 Compute I(s;
√
ρs+ z) with both s and z having BPSK distributions.

Solution
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For ρ 6= 1,

y =





−1−√ρ with probability 1/4

−1 +
√
ρ with probability 1/4

1−√ρ with probability 1/4

1 +
√
ρ with probability 1/4

(1.362)

such thatH(y) = 2. Thus,

I(s;
√
ρs+ z) = 2−H(y|s) (1.363)

= 2−H(z) (1.364)

= 2− 1 (1.365)

= 1 (1.366)

meaning that I(ρ) = 1 for ρ 6= 1. For ρ = 1,

y =





−2 with probability 1/4

0 with probability 1/2

2 with probability 1/4

(1.367)

such thatH(y) = 1.5. Thus, I(ρ) = 0.5 for ρ = 1. Altogether,

I(ρ) =





0 ρ = 0

0.5 ρ = 1

1 ρ > 0, ρ 6= 1.

(1.368)

1.23 Verify that, as argued in Example 1.11,

IQPSK(ρ) = 2 IBPSK

(ρ
2

)
. (1.369)

Solution

Visualizing complex quantities as two-dimensional vectors, a BPSK transmission
amounts to [

yi

yq

]
=
√
ρ

[
si

0

]
+

[
zi

zq

]
(1.370)

where si = ±1 and the observation of yq is irrelevant (it contains only noise). Then,
IBPSK(ρ) = I(s;

√
ρs + z) = I(si;

√
ρsi + zi). In contrast, a QPSK transmission

corresponds to
[
yi

yq

]
=
√
ρ

[
si

sq

]
+

[
zi

zq

]
(1.371)

where s′i = ±1/
√

2 and s′q = ±1/
√

2. Rewriting the above as
[
yi

yq

]
=
√
ρ/2

[
si

sq

]
+

[
zi

zq

]
(1.372)
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where si = ±1 and sq = ±1, we obtain two parallel BPSK transmissions with
parameter ρ/2. As these involve independent signal and noise components, their
mutual informations add up, giving

IQPSK(ρ) = I(si;
√
ρ/2 si + zi) + I(sq;

√
ρ/2 sq + zq) (1.373)

= 2 I(si;
√
ρ/2 si + zi) (1.374)

= 2 IBPSK(ρ/2). (1.375)

The backward version of this result, IBPSK(ρ) = 1
2 IQPSK(2ρ), can be explained

by arguing that, with BPSK, only half the noise power (the in-phase component)
is relevant and the SNR is thus doubled. However, only one of the two signaling
dimension of QPSK is used.

1.24 Express the Gaussian mutual information of a square QAM signal as a function of
the Gaussian mutual information of another signal whose points are equiprobable
and uniformly spaced over the real line.
Note: This relationship substantially simplifies the computation of the Gaussian mu-
tual information of square QAM signals, and it is exploited to perform such compu-
tations in this book.

Solution

As (1.2) suggests, a square QAM signal can be obtained as s = si + jsq where si

and sq are independent, both drawn from the set
{√

3
2 (M−1)

(
2m+ 1−

√
M
)}

m = 0, . . . ,
√
M − 1. (1.376)

Applying the logic of Problem 1.23, namely that an M -QAM transmission in
complex Gaussian noise amounts to two independent

√
M -PAM transmissions, each

with half the SNR, we have that

IM -QAM(ρ) = 2 I
√
M -PAM

(ρ
2

)
(1.377)

with the PAM constellation being the one considered in Problems 1.4 and 1.19. An
M -PAM constellation is defined by

sm =
{√

3
M2−1

(
2m+ 1−M

)}
m = 0, . . . ,M − 1 (1.378)

and its Gaussian mutual information is given by

IM -PAM(ρ) = −
∫ ∞

−∞

∫ ∞

−∞
fy(y) log2 fy(y) dy − log2(πe) (1.379)

with

fy(y) =
1

Mπ

M−1∑

m=0

e−|y−
√
ρsm|2 . (1.380)
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Exploiting the fact that PAM points have no quadrature component, meaning that
only the in-phase noise is relevant, (1.379) can be reduced to a single integral on the
real line. To do so, we first let y = yi + jyq and rewrite (1.380) as

fy(y) =
e−y2

q

Mπ

M−1∑

m=0

e−(yi−√ρsm)2

(1.381)

from which

− log2 fy(y) = log2(π) + |yq|2 log2 e− log2

M−1∑

m=0

e−(yi−√ρsm)2

M
(1.382)

and, since yq = zq with E[|zq|2] = 1/2,

IM -PAM(ρ) = −E[log2 fy(y)]− log2(πe) (1.383)

= −
∫ ∞

−∞

e−y2
q

√
π

dyq

∫ ∞

−∞

M−1∑

m=0

e−(yi−√ρsm)2

M
√
π

log2

M−1∑

m=0

e−(yi−√ρsm)2

M
dyi

− 1

2
log2 e (1.384)

=
−1√
π

∫ ∞

−∞

M−1∑

m=0

e−(yi−√ρsm)2

M
log2

M−1∑

m=0

e−(yi−√ρsm)2

M
dyi −

1

2
log2 e.

(1.385)

Therefore,

IM -QAM(ρ) =
−2√
π

∫ ∞

−∞

M−1∑

m=0

e−(ξ−
√
ρ/2sm)2

M
log2

M−1∑

m=0

e−(ξ−
√
ρ/2sm)2

M
dξ − log2 e.

(1.386)

1.25 Let y =
√
ρs + z. If z were not independent of s, would that increase or decrease

I(s; y) relative to the usual situation where they are independent? Can you draw any
communication-theoretic lesson from this?

Solution

Recalling that I(s; y) can be interpreted as the reduction in uncertainty about the
value of y that occurs when s becomes known, any dependence between z and s
would increase I(s; y) because knowing s would then reveal even more about y.
(In the limit, if z = s, knowing s would determine y exactly and the reduction in
uncertainty would be complete; the mutual information would then be infinite.)

From the above consideration it follows that, everything else being equal, the noise
is the most deleterious when it is independent of the signal.
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1.26 Let s ∼ NC(0, I) and z ∼ NC(0, I) while

A =

[
0.7 1 + 0.5 j 1.2 j

0.2 + j −2.1 0

]
. (1.387)

(a) Plot the exact I(s;
√
ρAs+ z) against its low-ρ expansion for ρ ∈ [0, 1]. Up to

which value of ρ is the difference below 10%?
(b) Plot the exact I(s;

√
ρAs + z) against its high-ρ expansion for ρ ∈ [10, 100].

Beyond which value of ρ is the difference below 10%?

Solution

(a) From Example 1.13, the exact mutual information equals

I(ρ) = log2 det(I + ρAA∗) (1.388)

whereas the low-ρ expansion is

I(ρ) =

[
tr(AA∗) ρ− 1

2
tr(AA∗AA∗) ρ2

]
log2 e+ o

(
ρ2
)

(1.389)

= 12.45 ρ− 38.7 ρ2 + o
(
ρ2
)
. (1.390)

The two are depicted in Fig. 1.8, respectively in solid and in dashed, for ρ ∈
[0, 1]. The more familiar form of this plot, with ρ in dB, is provided in Fig. 1.9.
The difference is below 10% of the exact mutual information up to ρ = 0.04,
meaning−10.2 dB. Although this would seem to indicate that low-SNR asymp-
totics have restricted validity, in Chapter 4 we see how their range of validy spans
a much more relevant range once the performance is expressed as a function of
the per-bit SNR, rather than the per-symbol SNR ρ.

(b) Again from Example 1.13, sinceAA∗ is nonsingular, the high-ρ expansion is

I(ρ) = 2 log2 ρ+ log2 det(AA∗) +O
(

1

ρ

)
, (1.391)

which Fig. 1.10 depicts in dashed, alongside the exact mutual information. The
more familiar form of this plot, with ρ in dB, is provided in Fig. 1.11. The agree-
ment is excellent, with the difference being less than 10% of the exact mutual
information down to ρ = 1.82, which is only 2.6 dB.

1.27 Let s have two independent unit-variance entries and let z ∼ NC(0, I) while A =

[0.7 1 + 0.5 j]. On a common chart, plot I(ρ) = I(s;
√
ρAs + z) for ρ ∈ [0, 10]

under the following distributions for the entries of s:
(a) Real Gaussian.
(b) Complex Gaussian.
(c) BPSK.
(d) QPSK.
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ρtFig. 1.8 I(ρ) for the channel in Problem 1.26, in solid, versus its low-ρ second-order
expansion, in dashed.
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tFig. 1.9 I(ρ|dB) for the channel in Problem 1.26, in solid, versus its low-ρ second-order
expansion, in dashed.

Solution

(a) Applying the reasoning of Problems 1.23 and 1.24, we can conclude that the
Gaussian mutual information achieved by a real Gaussian signal is half the value
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tFig. 1.10 I(ρ) for the channel in Problem 1.26, in solid, versus its high-ρ second-order
expansion, in dashed.
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ρ|dBtFig. 1.11 I(ρ|dB) for the channel in Problem 1.26, in solid, versus its high-ρ second-order
expansion, in dashed.

achieved by its complex Gaussian counterpart, but evaluated at twice the SNR.
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tFig. 1.12 I(ρ) for the channel in Problem 1.27 with real Gaussian, complex Gaussian, BPSK,
and QPSK signaling.

Hence, for s ∼ N (0, I),

I(ρ) =
1

2
log2(1 + 2 ρAA∗) (1.392)

=
1

2
log2(1 + 3.48 ρ). (1.393)

(b) For s ∼ NC(0, I),

I(ρ) = log2(1 + 1.74 ρ). (1.394)

(c) For BPSK, IBPSK(ρ) is given in Example 1.10. Its evaluation requires a sin-
gle integration, which can be effected numerically with either MATLAB® or
Mathematica®.

(d) For QPSK, IQPSK(ρ) = 2 IBPSK(ρ/2).
The Gaussian mutual information functions for the various signals are depicted

in Fig. 1.12, for ρ ∈ [0, 10]. The more familiar form for this plot, with ρ in dB, is
presented in Fig. 1.13 for ρ|dB ∈ [−5, 10] dB.

1.28 Compute and plot, as function of ρ ∈ [−5, 25] dB, the Gaussian mutual information
function for the following constellations:
(a) 8-PSK.
(b) 16-QAM.
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