Contents

page
Preface i
1 Solutions for Chapter 1 1
2 Solutions for Chapter 2 15
3 Solutions for Chapter 3 32
4 Solutions for Chapter 4 44
5 Solutions for Chapter 5 60
6 Solutions for Chapter 6 72
7 Solutions for Chapter 7 83
8 Solutions for Chapter 8 95
9 Solutions for Chapter 9 103

Solutions for Chapter 1

Problem 1.1

In terms of the Cartesian components we have $\mathbf{r}=(x, y, z)$ and $\mathbf{p}=$ $\left(p_{x}, p_{y}, p_{z}\right)$. Using $\mathbf{p}=-i \nabla$ and taking any differentiable function $\psi(\mathbf{r})$ of position it follows that we have

$$
\begin{aligned}
{[\exp (-i \mathbf{k} \cdot \mathbf{r}), \mathbf{p}] \psi(\mathbf{r})=} & -i \exp (-i \mathbf{k} \cdot \mathbf{r}) \nabla \psi(\mathbf{r})+i \nabla\{\exp (-i \mathbf{k} \cdot \mathbf{r}) \psi(\mathbf{r})\} \\
= & -i \exp (-i \mathbf{k} \cdot \mathbf{r}) \nabla \psi(\mathbf{r})+i \exp (-i \mathbf{k} \cdot \mathbf{r}) \nabla \psi(\mathbf{r}) \\
& \quad+i(-i \mathbf{k}) \exp (-i \mathbf{k} \cdot \mathbf{r}) \psi(\mathbf{r}) \\
= & \mathbf{k} \exp (-i \mathbf{k} \cdot \mathbf{r}) \psi(\mathbf{r}) .
\end{aligned}
$$

Since this holds for any $\psi(\mathbf{r})$ we obtain

$$
[\exp (-i \mathbf{k} \cdot \mathbf{r}), \mathbf{p}]=\mathbf{k} \exp (-i \mathbf{k} \cdot \mathbf{r})
$$

Then we consider $\left[\exp (-i \mathbf{k} \cdot \mathbf{r}), \mathbf{p}^{2}\right]$, which gives

$$
\begin{aligned}
{\left[\exp (-i \mathbf{k} \cdot \mathbf{r}), \mathbf{p}^{2}\right] } & =\mathbf{p} \cdot[\exp (-i \mathbf{k} \cdot \mathbf{r}), \mathbf{p}]+[\exp (-i \mathbf{k} \cdot \mathbf{r}), \mathbf{p}] \cdot \mathbf{p} \\
& =\mathbf{k} \cdot \mathbf{p} \exp (-i \mathbf{k} \cdot \mathbf{r})+\exp (-i \mathbf{k} \cdot \mathbf{r}) \mathbf{k} \cdot \mathbf{p}
\end{aligned}
$$

where we made use of the result from the first part of the question in order to obtain the above line. The first term can be rewritten as

$$
\mathbf{k} \cdot \mathbf{p} \exp (-i \mathbf{k} \cdot \mathbf{r})=\exp (-i \mathbf{k} \cdot \mathbf{r}) \mathbf{k} \cdot \mathbf{p}-\exp (-i \mathbf{k} \cdot \mathbf{r}) \mathbf{k} \cdot \mathbf{k},
$$

which leads to the final result that

$$
\left[\exp (-i \mathbf{k} \cdot \mathbf{r}), \mathbf{p}^{2}\right]=\exp (-i \mathbf{k} \cdot \mathbf{r})\left(2 \mathbf{k} \cdot \mathbf{p}-k^{2}\right)
$$

Problem 1.2

We start with the commutator between $\mathbf{A}_{n}(\mathbf{r}, t)$ and $\mathbf{E}_{m}\left(\mathbf{r}^{\prime}, t\right)$ by using the expressions in equations (1.15) and (1.16). The result is

$$
\begin{aligned}
& {\left[\mathbf{A}_{n}(\mathbf{r}, t), \mathbf{E}_{m}\left(\mathbf{r}^{\prime}, t\right)\right]=\sum_{l, l^{\prime}} \sum_{\lambda, \lambda^{\prime}=1,2} \frac{i}{2 \varepsilon_{0} V} \sqrt{\frac{\omega_{l^{\prime}}}{\omega_{l}}}\left(\hat{e}_{l, \lambda}\right)_{n}\left(\hat{e}_{l^{\prime}, \lambda^{\prime}}\right)_{m}} \\
& \times\left[\left(a_{l} e^{i\left(\mathbf{k}_{l} \cdot \mathbf{r}-\omega_{l} t\right)}+a_{l}^{\dagger} e^{-i\left(\mathbf{k}_{l} \cdot \mathbf{r}-\omega_{l} t\right)}\right),\left(a_{l^{\prime}} e^{i\left(\mathbf{k}_{l^{\prime}} \cdot \mathbf{r}^{\prime}-\omega_{l^{\prime}} t\right)}-a_{l^{\prime}}^{\dagger} e^{-i\left(\mathbf{k}_{l^{\prime}} \cdot \mathbf{r}^{\prime}-\omega_{l^{\prime}} t\right)}\right)\right] \\
& =\sum_{l, l^{\prime}} \sum_{\lambda, \lambda^{\prime}=1,2} \frac{i}{2 \varepsilon_{0} V} \sqrt{\frac{\omega_{l^{\prime}}}{\omega_{l}}}\left(\hat{e}_{l, \lambda}\right)_{n}\left(\hat{e}_{l^{\prime}, \lambda^{\prime}}\right)_{m}\left\{\left[a_{l} e^{i\left(\mathbf{k}_{l} \cdot \mathbf{r}-\omega_{l} t\right)},-a_{l^{\prime}}^{\dagger} e^{-i\left(\mathbf{k}_{l^{\prime}} \cdot \mathbf{r}^{\prime}-\omega_{l^{\prime}} t\right)}\right]\right. \\
& \left.+\left[a_{l}^{\dagger} e^{-i\left(\mathbf{k}_{l} \cdot \mathbf{r}-\omega_{l} t\right)}, a_{l^{\prime}} e^{i\left(\mathbf{k}_{l^{\prime}} \cdot \mathbf{r}^{\prime}-\omega_{l^{\prime}} t\right)}\right]\right\} \\
& =\sum_{l} \sum_{\lambda, \lambda^{\prime}=1,2} \frac{-i}{2 \varepsilon_{0} V}\left(\hat{e}_{l, \lambda}\right)_{n}\left(\hat{e}_{l, \lambda^{\prime}}\right)_{m}\left(\exp \left(i \mathbf{k}_{l} \cdot \mathbf{R}\right)+\exp \left(-i \mathbf{k}_{l} \cdot \mathbf{R}\right)\right),
\end{aligned}
$$

where we have denoted $\mathbf{R}=\mathbf{r}-\mathbf{r}^{\prime}$. Now, since the quantities $\left\{\hat{e}_{l, 1}, \hat{e}_{l, 2}, \hat{k}_{l}\right\}$ form an orthogonal basic set in the 3D space, it follows that we can write $\left|\hat{e}_{l, 1}\right\rangle\left\langle\hat{e}_{l, 1}\right|+\left|\hat{e}_{l, 2}\right\rangle\left\langle\hat{e}_{l, 2}\right|+\left|\hat{\mathbf{k}}_{l}\right\rangle\left\langle\hat{\mathbf{k}}_{l}\right|=1$, implying

$$
\sum_{\lambda=1,2}\left(\hat{e}_{l, \lambda}\right)_{n}\left(\hat{e}_{l, \lambda}\right)_{m}=\delta_{n, m}-\frac{\left(\mathbf{k}_{l}\right)_{n}\left(\mathbf{k}_{l}\right)_{m}}{k_{l}^{2}} \equiv \delta_{n, m}-\left(\hat{\mathbf{k}}_{l}\right)_{n}\left(\hat{\mathbf{k}}_{l}\right)_{m} .
$$

After substituting the above result into the previous commutator expression we have

$$
\left[\mathbf{A}_{n}(\mathbf{r}, t), \mathbf{E}_{m}\left(\mathbf{r}^{\prime}, t\right)\right]=\sum_{l} \frac{-i}{\varepsilon_{0} V}\left(\delta_{n, m}-\left(\hat{\mathbf{k}}_{l}\right)_{n}\left(\hat{\mathbf{k}}_{l}\right)_{m}\right) \exp \left(i \mathbf{k}_{l} \cdot \mathbf{R}\right) .
$$

We note that the summation over l now covers both positive and negative values, since $\hat{\mathbf{k}}_{-l}=-\hat{\mathbf{k}}_{l}$. If we now let V become macroscopically large $(V \rightarrow \infty)$, this summation can be replaced by an integral over the 3D wave vector using

$$
\frac{1}{V} \sum_{l} \cdots \rightarrow\left(\frac{1}{2 \pi}\right)^{3} \int \cdots d^{3} k
$$

and we arrive at the final result as

$$
\left[\mathbf{A}_{n}(\mathbf{r}, t), \mathbf{E}_{m}\left(\mathbf{r}^{\prime}, t\right)\right]=\frac{-i}{\varepsilon_{0}} \delta_{n, m}^{T}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) .
$$

Here we have introduced the transverse delta function δ^{T}, which is defined generally as

$$
\delta_{n, m}^{T}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)=\frac{1}{(2 \pi)^{3}} \int d^{3} k\left(\delta_{n, m}-(\hat{\mathbf{k}})_{n}(\hat{\mathbf{k}})_{m}\right) \exp (i \mathbf{k} \cdot \mathbf{R}) .
$$

By following the same procedure for the other commutators and using the appropriate terms in equations (1.15) and (1.16), we can find that

$$
\begin{array}{ll}
{\left[\mathbf{A}_{n}(\mathbf{r}, t), \mathbf{A}_{m}\left(\mathbf{r}^{\prime}, t\right)\right]=0,} & {\left[\mathbf{H}_{n}(\mathbf{r}, t), \mathbf{H}_{m}\left(\mathbf{r}^{\prime}, t\right)\right]=0,} \\
{\left[\mathbf{E}_{n}(\mathbf{r}, t), \mathbf{E}_{m}\left(\mathbf{r}^{\prime}, t\right)\right]=0,} & {\left[\mathbf{H}_{n}(\mathbf{r}, t), \mathbf{A}_{m}\left(\mathbf{r}^{\prime}, t\right)\right]=0 .}
\end{array}
$$

Problem 1.3

We start by considering the commutation relation $\left[a,\left(a^{\dagger}\right)^{n}\right]$, where n is a positive integer. This leads to

$$
\begin{aligned}
{\left[a,\left(a^{\dagger}\right)^{n}\right] } & =\left[a, a^{\dagger}\left(a^{\dagger}\right)^{(n-1)}\right]=\left[a, a^{\dagger}\right] a^{\dagger(n-1)}+a^{\dagger}\left[a, a^{\dagger(n-1)}\right] \\
& =\left(a^{\dagger}\right)^{(n-1)}+a^{\dagger}\left[a, a^{\dagger}\left(a^{\dagger}\right)^{(n-2)}\right] \\
& =\left(a^{\dagger}\right)^{(n-1)}+\left(a^{\dagger}\right)^{(n-1)}+\left(a^{\dagger}\right)^{2}\left[a,\left(a^{\dagger}\right)^{(n-3)}\right] \\
& =\left(a^{\dagger}\right)^{(n-1)}+\left(a^{\dagger}\right)^{(n-1)}+\cdots+\left(a^{\dagger}\right)^{(n-1)}\left[a, a^{\dagger}\right] \\
& =n\left(a^{\dagger}\right)^{(n-1)}=\frac{\partial\left(a^{\dagger}\right)^{n}}{\partial a^{\dagger}} .
\end{aligned}
$$

In a similar way it is found that

$$
\left[a^{\dagger}, a^{n}\right]=-n a^{(n-1)}=-\frac{\partial a^{n}}{\partial a} .
$$

It follows, therefore, that for any function $f\left(a, a^{\dagger}\right)$ expressible as a Taylor series expansion in positive integer powers of a and a^{\dagger} we obtain

$$
\begin{aligned}
{\left[a, f\left(a, a^{\dagger}\right)\right] } & =\frac{\partial f\left(a, a^{\dagger}\right)}{\partial a^{\dagger}} \\
{\left[a^{\dagger}, f\left(a, a^{\dagger}\right)\right] } & =-\frac{\partial f\left(a, a^{\dagger}\right)}{\partial a},
\end{aligned}
$$

as required.
For the last part of this problem we may start by considering

$$
\begin{aligned}
& \{\exp (\lambda A) B \exp (-\lambda A)\}^{n} \\
& \quad=\exp (\lambda A) B \exp (-\lambda A) \exp (\lambda A) B \exp (-\lambda A) \cdots \\
& \quad=\exp (\lambda A) B^{n} \exp (-\lambda A)
\end{aligned}
$$

for any operators A and B and any constant λ. It then follows, for a more general case when we have any function $f(B)$ which may be expanded as a power series in B, that we have

$$
f(\exp (\lambda A) B \exp (-\lambda A))=\exp (\lambda A) f(B) \exp (-\lambda A)
$$

Therefore, taking $\lambda A \equiv-\alpha a^{\dagger} a$ and $f(B) \equiv f\left(a^{\dagger}, a\right)$ in the above expression, we may conclude that

$$
\begin{aligned}
& \exp \left(-\alpha a^{\dagger} a\right) f\left(a, a^{\dagger}\right) \exp \left(\alpha a^{\dagger} a\right) \\
& \quad=f\left(\exp \left(-\alpha a^{\dagger} a\right) a \exp \left(\alpha a^{\dagger} a\right), \exp \left(-\alpha a^{\dagger} a\right) a^{\dagger} \exp \left(\alpha a^{\dagger} a\right)\right)
\end{aligned}
$$

The final step is to show that the functional dependences simplify because $\exp \left(-\alpha a^{\dagger} a\right) a \exp \left(\alpha a^{\dagger} a\right)=a e^{\alpha}$ and $\exp \left(-\alpha a^{\dagger} a\right) a^{\dagger} \exp \left(\alpha a^{\dagger} a\right)=a^{\dagger} e^{-\alpha}$. These relationships can easily be proved from first principles by expanding the exponential operator in powers of the exponents and then simplifying using the boson commutation properties. A more elegant alternative is to use the Baker-Campbell-Hausdorff identity quoted in section 8.2 of this book.

Then, using the above results we obtain the required result that

$$
\exp \left(-\alpha a^{\dagger} a\right) f\left(a, a^{\dagger}\right) \exp \left(\alpha a^{\dagger} a\right)=f\left(a e^{\alpha}, a^{\dagger} e^{-\alpha}\right)
$$

Problem 1.4

(a) We start by defining a quantity $f(\lambda)$, where λ is a real variable, by

$$
f(\lambda)=\exp (\lambda A) B \exp (-\lambda A)
$$

We now differentiate with respect to λ, obtaining

$$
\begin{aligned}
\frac{d}{d \lambda} f(\lambda) & =\exp (\lambda A)(A B-B A) \exp (-\lambda A) \\
& =\exp (\lambda A)[A, B] \exp (-\lambda A)
\end{aligned}
$$

Since $[A, B]=c$ (a scalar constant) we have

$$
\frac{d}{d \lambda} f(\lambda)=c
$$

while $d^{2} f / d \lambda^{2}$ and all higher derivatives are zero. From the Taylor series expansion of $f(\lambda)$ we have

$$
f(\lambda)=f(0)+\lambda \frac{d}{d \lambda} f(0)+\frac{\lambda^{2}}{2!} \frac{d^{2}}{d \lambda^{2}} f(0)+\cdots
$$

which simplifies to become

$$
\exp (\lambda A) B \exp (-\lambda A)=B+\lambda[A, B]
$$

(b) In this case we may define the shorthand

$$
g(\lambda)=\exp (\lambda A) \exp (\lambda B)
$$

Therefore, on differentiating with respect to λ, we find

$$
\begin{aligned}
\frac{d}{d \lambda} g(\lambda) & =A \exp (\lambda A) \exp (\lambda B)+\exp (\lambda A) B \exp (\lambda B) \\
& =A \exp (\lambda A) \exp (\lambda B)+(B+\lambda c) \exp (\lambda A) \exp (\lambda B) \\
& =(A+B+\lambda c) g(\lambda) \\
& =(A+B+\lambda[A, B]) g(\lambda),
\end{aligned}
$$

where in the last step we have used the result from part (a).
(c) Using the above definition of $g(\lambda)$ we can re-derive the result in part (b) for $d g(\lambda) / d \lambda$ in a different way as

$$
\begin{aligned}
\frac{d}{d \lambda} g(\lambda) & =\exp (\lambda A) A \exp (\lambda B)+\exp (\lambda A) \exp (\lambda B) B \\
& =\exp (\lambda A) \exp (\lambda B)[\exp (-\lambda B) A \exp (\lambda B)+B] \\
& =g(\lambda)(A+B+\lambda[A, B])
\end{aligned}
$$

By comparison of this result with the result in part (b) we establish that $g(\lambda)$ commutes with $A+B+\lambda[A, B]$, so we can integrate either differential equation to obtain

$$
g(\lambda)=\exp \left((A+B) \lambda+\frac{\lambda^{2}}{2}[A, B]\right)=\exp \lambda(A+B) \exp \frac{\lambda^{2}}{2}[A, B],
$$

which is the required result.
Finally, by substituting $\lambda=1, A=\alpha a^{\dagger}$ and $B=-\alpha^{*} a$ (which leads to the commutator $[A, B]=-|\alpha|^{2}\left[a^{\dagger}, a\right]=|\alpha|^{2}$) into the result of part (c), we obtain initially

$$
e^{\alpha a^{\dagger}} e^{-\alpha^{*} a}=\exp \left(\alpha a^{\dagger}-\alpha^{*} a+|\alpha|^{2} / 2\right) .
$$

This can be rearranged as

$$
D(\alpha) \equiv \exp \left(\alpha a^{\dagger}-\alpha^{*} a\right)=e^{-|\alpha|^{2} / 2} e^{\alpha a^{\dagger}} e^{-\alpha^{*} a},
$$

as required.

Problem 1.5

From equation (1.39) the coherent state $|\alpha\rangle$ can be written as

$$
|\alpha\rangle=e^{-\alpha \alpha^{*} / 2} e^{\alpha a^{\dagger}}|0\rangle,
$$

and therefore we have

$$
|\alpha\rangle\langle\alpha|=e^{-\alpha \alpha^{*}} e^{\alpha a^{\dagger}}|0\rangle\langle 0| e^{\alpha^{*} a} .
$$

Now we may obtain the partial derivative with respect to α as

$$
\begin{aligned}
\frac{\partial}{\partial \alpha}|\alpha\rangle\langle\alpha| & =-\alpha^{*} e^{-\alpha \alpha^{*}} e^{\alpha a^{\dagger}}|0\rangle\langle 0| e^{\alpha^{*} a}+e^{-\alpha \alpha^{*}} a^{\dagger} e^{\alpha a^{\dagger}}|0\rangle\langle 0| e^{\alpha^{*} a} \\
& =\left(-\alpha^{*}+a^{\dagger}\right) e^{-\alpha \alpha^{*}} e^{\alpha a^{\dagger}}|0\rangle\langle 0| e^{\alpha^{*} a} \\
& =\left(-\alpha^{*}+a^{\dagger}\right)|\alpha\rangle\langle\alpha|
\end{aligned}
$$

Combining these last two expressions, it follows that

$$
\left(\frac{\partial}{\partial \alpha}+\alpha^{*}\right)|\alpha\rangle\langle\alpha|=a^{\dagger}|\alpha\rangle\langle\alpha| .
$$

Similarly, on partially differentiating the expression for $|\alpha\rangle\langle\alpha|$ with respect to α^{*}, we obtain

$$
\begin{aligned}
\frac{\partial}{\partial \alpha^{*}}|\alpha\rangle\langle\alpha| & =-\alpha e^{-\alpha \alpha^{*}} e^{\alpha a^{\dagger}}|0\rangle\langle 0| e^{\alpha^{*} a}+e^{-\alpha \alpha^{*}} e^{\alpha a^{\dagger}}|0\rangle\langle 0| a e^{\alpha^{*} a} \\
& =-\alpha e^{-\alpha \alpha^{*}} e^{\alpha a^{\dagger}}|0\rangle\langle 0| e^{\alpha^{*} a}+e^{-\alpha \alpha^{*}} e^{\alpha a^{\dagger}}|0\rangle\langle 0| e^{\alpha^{*} a} a \\
& =|\alpha\rangle\langle\alpha|(-\alpha+a)
\end{aligned}
$$

In the above we have used the property that the commutator $\left[a, e^{\alpha^{*} a}\right]=0$, and therefore we have

$$
\left(\frac{\partial}{\partial \alpha^{*}}+\alpha\right)|\alpha\rangle\langle\alpha|=|\alpha\rangle\langle\alpha| a .
$$

Problem 1.6

We take the volume to be a cube with sides of length L (and volume $V=$ L^{3}), where the sides are parallel to the x, y, z axes. Because of the periodic boundary conditions applied over a length L we need to have (e.g., in the x direction)

$$
n_{x}\left(\frac{2 \pi}{k_{x}}\right)=L, \quad \text { so } \quad k_{x}=\frac{2 \pi}{L} n_{x}
$$

where n_{x} is an integer. There are similar results for the wavenumbers in the y and z directions. The required integral is

$$
\begin{aligned}
\frac{1}{V} \int d^{3} r e^{i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{r}} & =\frac{1}{L^{3}} \iiint d x d y d z e^{i\left(k_{x}-k_{x}^{\prime}\right) x} e^{i\left(k_{y}-k_{y}^{\prime}\right) y} e^{i\left(k_{z}-k_{z}^{\prime}\right) z} \\
& =\frac{1}{L} \int_{0}^{L} d x e^{i\left(k_{x}-k_{x}^{\prime}\right) x} \frac{1}{L} \int_{0}^{L} d y e^{i\left(k_{y}-k_{y}^{\prime}\right) y} \frac{1}{L} \int_{0}^{L} d z e^{i\left(k_{z}-k_{z}^{\prime}\right) z}
\end{aligned}
$$

