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1
Solutions for Chapter 1

Problem 1.1

In terms of the Cartesian components we have r = (x,y,z) and p =
(pz, Py, p=). Using p = —iV and taking any differentiable function (r) of
position it follows that we have

lexp(—ik - r), p](r) = —iexp(—ik - r)Vi(r) + iV{exp(—ik - r)y(r)}
= —jexp(—ik - r)Vi(r) + iexp(—ik - r)Vi)(r)
+i(—ik) exp(—ik - r)y(r)
= kexp(—ik - r)y(r).

Since this holds for any ¢ (r) we obtain
[exp(—ik - r), p] = kexp(—ik - r).
Then we consider [exp(—ik - r), p?], which gives

[exp(—ik - r),p%] = p - [exp(—ik - 1), p] + [exp(—ik - 1), p] -
=k -pexp(—ik-r)+exp(—ik - r)k - p,

where we made use of the result from the first part of the question in order
to obtain the above line. The first term can be rewritten as

k-pexp(—ik-r) = exp(—ik -r)k-p —exp(—ik - r)k - k,
which leads to the final result that

[exp(—ik - r), p?] = exp(—ik - r)(2k - p — k?).
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2 Solutions for Chapter 1

Problem 1.2

We start with the commutator between A,,(r,t) and E,,(r',¢) by using the
expressions in equations (1.15) and (1.16). The result is

[A,(r,t), E Z Z

] wy .
Vo ( Mn (€ 3 )m
L AN= 12250V

X { (ale k;-r—wit) + aTe (kl'r—wzt)) ’ (al,ei(kl/-r’_wl,t) al ik —Wl't))}
. wl/ (K r—wrt T_Ak/',_ b
f:‘oV\/»( Mn (€ 3 )m {[alez( e )}
+ [ag'e—i(kpr—wlt)’ al/ei(kl/.r/_wl/t)} }

L3 )n(éx ) (exp(ik; - R) + exp(—ik; - R)),

LU AN =1,2

R

where we have denoted R = r —r’. Now, since the quantities {€; 1, € 2, Rl}
form an orthogonal basic set in the 3D space, it follows that we can write

léa)(én1| + |ér2) (éra] + ki) (k| = 1, implying

Z (él,)\)n(él,)\)m - 5n,m - W = 5n,m - (El)n(ﬁl)m

A=1,2

AN =1,2 2€0V

After substituting the above result into the previous commutator expression
we have

[An(r,t), Em(r', 1)] = ; 8;/ (3 — (k) kr)on) explik - R).

We note that the summation over [ now covers both positive and negative
values, since k_; = —k;. If we now let V' become macroscopically large
(V — o0), this summation can be replaced by an integral over the 3D wave

1 1
V;...ﬁ(%f/..,dgk,

and we arrive at the final result as

vector using

[A,(r,1),E,(r',1)] = ;oi O (r—1).

Here we have introduced the transverse delta function 67, which is defined
generally as

1
T ) —
5n,m (I' r ) (27T 3

ki (Onm — (K)n(K)m ) exp(ik - R).
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Solutions for Chapter 1 3

By following the same procedure for the other commutators and using the
appropriate terms in equations (1.15) and (1.16), we can find that

[An (I‘, t)a A, (rla t)] =0, [Hn(r7 t)v Hm(rlv t)] =0,
[E(r, t), B (r', )] = 0, (H,.(r, ¢), A (r', £)] = 0.
Problem 1.3

We start by considering the commutation relation [a, (a")"], where n is a
positive integer. This leads to

[a, (a")"] = [a,a}(a") "] = [a,a/] /") + af [a, af"=V)]

) =

= (""" +alfa, o ( fn=2)]

= (")™Y 4 (ah)~ ( )Z[a, (ah) (9]
(aT)(n b4 (aT)( . (aT)(n*I) [a, aT]

t\n
i1y _ Ola )
In a similar way it is found that
laf, "] = —natn—1) = _ 22"

Oa

It follows, therefore, that for any function f(a,a') expressible as a Taylor
series expansion in positive integer powers of a and af we obtain

0. f(avah)] = 20,
df(a,al)
ot f(a,ah)] = -Z2,

as required.
For the last part of this problem we may start by considering

{exp (AA) Bexp (—AA)}"
= exp (AA) Bexp (—AA) exp (AA) Bexp (—AA) ---
= exp (AA) B" exp (—A\A)
for any operators A and B and any constant A. It then follows, for a more

general case when we have any function f(B) which may be expanded as a
power series in B, that we have

f((exp (AA) Bexp (—AA) ) = exp (M) f(B) exp (—AA).
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4 Solutions for Chapter 1

Therefore, taking AA = —aafa and f(B) = f(a',a) in the above expression,
we may conclude that

exp(—aala)f(a,a’) exp(aa’a)
= f(exp(faaTa)a exp(aa’a), exp(—aa'a)a’ exp(aaM)).

The final step is to show that the functional dependences simplify because

exp(—aa’a)aexp(aata) = ae® and exp(—aaa)a’ exp(aa’a) = afe™. These

relationships can easily be proved from first principles by expanding the

exponential operator in powers of the exponents and then simplifying using

the boson commutation properties. A more elegant alternative is to use the

Baker-Campbell-Hausdorff identity quoted in section 8.2 of this book.
Then, using the above results we obtain the required result that

exp(—aa'a)f(a,a’) exp(aa’a) = f(ae®, ale™).

Problem 1.4
(a) We start by defining a quantity f(\), where \ is a real variable, by

f(A) =exp(AA) Bexp (—AA).
We now differentiate with respect to A, obtaining
%f(/\) =exp (AA) (AB — BA) exp (—A\A)
=exp (M) [A, Blexp (—AA).

Since [A, B] = ¢ (a scalar constant) we have

d
af()‘) =G

while d?f/d)\? and all higher derivatives are zero. From the Taylor series
expansion of f(\) we have

d A2 g2
FO) = £0) + AT F(O) + 5 25 F0) + -,

which simplifies to become
exp (M) Bexp (—\A) = B+ )\ [A, B].
(b) In this case we may define the shorthand
g(A\) = exp (AA) exp (AB).
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Solutions for Chapter 1 5

Therefore, on differentiating with respect to A, we find

d
ﬁg()\) Aexp (AA) exp (AB) + exp (M) Bexp (AB)

(
= Aexp (AA) exp (AB) + (B + Ac) exp (AA) exp (AB)
=(A+B+AX)g(N)
=(A+ B+ XA, B])g(N),

where in the last step we have used the result from part (a).

(c) Using the above definition of g(A) we can re-derive the result in part (b)
for dg(A)/dA in a different way as

dil)\g()\) = exp (AA) Aexp (AB) + exp (AA) exp (AB) B
= exp (M) exp (AB) [exp (—AB) Aexp (AB) + B]
=g\ (A+B+\[A,DB)).
By comparison of this result with the result in part (b) we establish that

g(\) commutes with A+ B + A[A, B, so we can integrate either differential
equation to obtain

A2 A2
g(A) = exp ((A + B\ + 5 [A, B]> =exp A(A + B)exp 5 [A, B],

which is the required result.

Finally, by substituting A\ = 1, A = aa' and B = —a*a (which leads to
the commutator [A, B] = —|a|?[af, a] = |a|?) into the result of part (c), we
obtain initially

e’ gmaa exp(aa’ — a*a + |af?/2).
This can be rearranged as

|o?/2 aat —a*a

D(a) = exp(aa’ —a*a) = e~ e“e ,

as required.

Problem 1.5
From equation (1.39) the coherent state |a) can be written as

o) = €722 o),
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6 Solutions for Chapter 1
and therefore we have
la) (o] = e—aa” gaal |0) (0] e’ e,

Now we may obtain the partial derivative with respect to a as

8 * * * *
5o o) {a] = —a%eee e’ [0) (0] e 4 e~ gTeaa |0y (0] 2@
(0%

- (—a* + aT) emaa" gaal 0 (0] @
= (" +af) o) (al.
Combining these last two expressions, it follows that
0
< + a*> ) (o] = a' |a) (a].
o«

Similarly, on partially differentiating the expression for |a)(«| with respect
to a*, we obtain
0
oa*

la) (a] = —ae™" 2 |0) (0] €270 e~ 2" |0) (0] ae®
= —ae e |0) (0] €7 + e’ |0) (0] ¢ %
= |a) (a](—a +a).

In the above we have used the property that the commutator [a, eo‘*a] =0,
and therefore we have

<ai* + a) ) (a] = |a) (o] a.

Problem 1.6

We take the volume to be a cube with sides of length L (and volume V =
L3), where the sides are parallel to the x,y, z axes. Because of the periodic
boundary conditions applied over a length L we need to have (e.g., in the

direction)
27 27
Ny (E) = L, SO kx = f

where n, is an integer. There are similar results for the wavenumbers in the

Ng,

y and z directions. The required integral is

‘]}/d&r,ei(k—k/).r _ % ///dx dy dz (ks =k gilhy—ky)y ilk:—k.)z

1 L : . 1 L . N, 1k . /
=< /0 dreithe o7 /0 dyeith i /0 daei(h=—kL)z
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