1-1.
The shaft is supported by a smooth thrust bearing at B and a journal bearing at C. Determine the resultant internal loadings acting on the cross section at E.

SOLUTION

Support Reactions: We will only need to compute \mathbf{C}_{y} by writing the moment equation of equilibrium about B with reference to the free-body diagram of the entire shaft, Fig. a.
$\varsigma+\Sigma M_{B}=0 ; \quad C_{y}(8)+400(4)-800(12)=0 \quad C_{y}=1000 \mathrm{lb}$
Internal Loadings: Using the result for \mathbf{C}_{y}, section $D E$ of the shaft will be considered. Referring to the free-body diagram, Fig. b,

$$
\begin{aligned}
& \xrightarrow{+} \Sigma F_{x}=0 ; \quad N_{E}=0 \\
& +\uparrow \Sigma F_{y}=0 ; \quad V_{E}+1000-800=0 \quad V_{E}=-200 \mathrm{lb} \\
& \varsigma+\Sigma M_{E}=0 ; 1000(4)-800(8)-M_{E}=0 \\
& \\
& \quad M_{E}=-2400 \mathrm{lb} \cdot \mathrm{ft}=-2.40 \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

Ans.
Ans.

Ans.
The negative signs indicates that \mathbf{V}_{E} and \mathbf{M}_{E} act in the opposite sense to that shown on the free-body diagram.

(a)

(b)

Ans:

$C_{y}=1000 \mathrm{lb}, N_{E}=0, V_{E}=200 \mathrm{lb}, M_{E}=2.40 \mathrm{kip} \cdot \mathrm{ft}$

1-2.
Determine the resultant internal normal and shear force in the member on (a) section $a-a$ and (b) section $b-b$, each of which passes through the centroid A. The $500-\mathrm{lb}$ load is applied along the centroidal axis of the member.

SOLUTION

(a)

$$
\begin{array}{ll}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{a}-500=0 \\
& N_{a}=500 \mathrm{lb} \\
+\downarrow \Sigma F_{y}=0 ; & V_{a}=0
\end{array}
$$

(b)

$$
\begin{array}{ll}
\searrow^{+} \Sigma F_{x}=0 ; & N_{b}-500 \cos 30^{\circ}=0 \\
& N_{b}=433 \mathrm{lb} \\
+\nearrow \Sigma F_{y}=0 ; & V_{b}-500 \sin 30^{\circ}=0 \\
& V_{b}=250 \mathrm{lb}
\end{array}
$$

Ans.

Ans.
Ans.

Ans.

Ans:
(a) $N_{a}=500 \mathrm{lb}, V_{a}=0$,
(b) $N_{b}=433 \mathrm{lb}, V_{b}=250 \mathrm{lb}$

1-3.
Determine the resultant internal torque acting on the cross sections through points B and C.

SOLUTION

$$
\begin{array}{cc}
\Sigma M_{x}=0 ; & T_{B}+350-500=0 \\
& T_{B}=150 \mathrm{lb} \cdot \mathrm{ft} \\
\Sigma M_{x}=0 ; & T_{C}-500=0 \\
& T_{C}=500 \mathrm{lb} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.

Ans:

$T_{B}=150 \mathrm{lb} \cdot \mathrm{ft}$
$T_{C}=500 \mathrm{lb} \cdot \mathrm{ft}$
*1-4.
Determine the resultant internal loadings in the beam at cross sections through points D and E. Point E is just to the left of the 16 -kip load.

SOLUTION

Support Reactions: We will only need to calculate B_{x}, B_{y} and C_{y} by consider the equilibrium of member $B C$ with reference to its FBD shown in Fig. b.

$$
\begin{array}{lll}
\varsigma+\sum M_{B}=0 ; & C_{y}(16)-16(8)=0 & C_{y}=8 \mathrm{kip} \\
C+\sum M_{C}=0 ; & 16(8)-B_{y}(16)=0 & B_{y}=8 \mathrm{kip} \\
\xrightarrow{+} \Sigma F_{X}=0 & B_{x}=0 &
\end{array}
$$

Internal Loadings: For point D, consider segment $B D$ of member $A B$. Using the results of B_{x} and B_{y}, the FBD of this segment shown in Fig. c is refered.

$$
\begin{array}{lcl}
\xrightarrow[\rightarrow]{+} \Sigma F_{x}=0 ; & N_{D}=0 & \text { Ans. } \\
+\uparrow \Sigma F_{y}=0 ; & V_{D}-10-8=0 & V_{D}=18.0 \mathrm{kip} \\
\varsigma+\Sigma M_{D}=0 ; & -M_{D}-10(2.5)-8(5)=0 & M_{D}=-65.0 \mathrm{kip} \cdot \mathrm{ft} \\
\text { Ans. } & \text { Ans. }
\end{array}
$$

The negative sign indicates that \mathbf{M}_{D} acts in the sense opposite to that shown in FBD.
For point E, segment $C E$ of member $B C$ using the result of C_{y} will be considered. Referring to its FBD, Fig. d

$$
\begin{array}{lcc}
\stackrel{+}{\rightarrow} \Sigma F_{x}=0 ; & N_{E}=0 \\
+\uparrow \Sigma F_{y}=0 ; & V_{E}+8-16=0 & V_{E}=8.00 \mathrm{kip} \\
\stackrel{+\Sigma M_{E}=0 ;}{ } & 8(8)-M_{E}=0 & M_{E}=64.0 \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Ans.
Ans.
Ans.

(C)

(d) $C y=8 \mathrm{kip}$

Ans:
$N_{D}=0$
$V_{D}=18.0 \mathrm{kip}$
$M_{D}=65.0 \mathrm{kip} \cdot \mathrm{ft}$
$N_{E}=0$
$V_{E}=8.00 \mathrm{kip}$
$M_{E}=64.0 \mathrm{kip} \cdot \mathrm{ft}$

1-5.

The shaft is supported by a smooth thrust bearing at B and a smooth journal bearing at A. Determine the resultant internal loadings acting on the cross section at C.

SOLUTION

Support Reactions: We will only need to compute B_{y} by writing the moment equation of equilibrium about A with reference to the FBD of the entire shaft, Fig. a.

$$
\varsigma+\Sigma M_{A}=0 ; \quad B_{y}(3)-800(0.6)-960(1.8)=0 \quad B_{y}=736 \mathrm{~N}
$$

Internal Loadings: Using the result of B_{y}, segment $B C$ of the shaft will be considered. Referring to its FBD, Fig. b,

$$
\begin{array}{ccc}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{C}=0 & \text { Ans. } \\
+\uparrow \Sigma F_{y}=0 ; & V_{C}+736-480=0 & V_{C}=-256 \mathrm{~N} \\
\varsigma+\Sigma M_{C}=0 ; & 736(1.2)-480(0.3)-M_{C}=0 & \text { Ans. } \\
& M_{C}=739.2 \mathrm{~N} \cdot \mathrm{~m}=739 \mathrm{~N} \cdot \mathrm{~m} & \text { Ans. }
\end{array}
$$

The negative sign indicates that \mathbf{V}_{C} acts in the opposite sense to that shown in FBD.

(a)

(b)

> Ans:
> $B_{y}=736 \mathrm{~N}$
> $N_{C}=0$
> $V_{C}=256 \mathrm{~N}$
> $M_{C}=739 \mathrm{~N} \cdot \mathrm{~m}$
https://ebookyab.ir/solutions-manual-mechanics-of-materials-hibbeler/ Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

1-6.
Determine the resultant internal loading on the cross section through point C of the pliers. There is a pin at A, and the jaws at B are smooth.

SOLUTION

$$
\begin{array}{ll}
+\uparrow \Sigma F_{y}=0 ; & -V_{C}+60=0 ; \quad V_{C}=60 \mathrm{~N} \\
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{C}=0 \\
+\left\lceil\Sigma M_{C}=0 ;\right. & -M_{C}+60(0.015)=0 ; \quad M_{C}=0.9 \mathrm{~N} . \mathrm{m}
\end{array}
$$

Ans.
Ans.
Ans.

Ans:

$$
\begin{aligned}
& V_{C}=60 \mathrm{~N} \\
& N_{C}=0 \\
& M_{C}=0.9 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

1-7.

Determine the resultant internal loading on the cross section through point D of the pliers. There is a pin at A, and the jaws at B are smooth.

SOLUTION

$$
\begin{array}{lll}
\searrow+\Sigma F_{y}=0 ; & V_{D}-20 \cos 30^{\circ}=0 ; & V_{D}=17.3 \mathrm{~N} \\
+\swarrow \Sigma F_{x}=0 ; & N_{D}-20 \sin 30^{\circ}=0 ; & N_{D}=10 \mathrm{~N} \\
+\left\lceil\Sigma M_{D}=0 ;\right. & M_{D}-20(0.08)=0 ; & M_{D}=1.60 \mathrm{~N} \cdot \mathrm{~m}
\end{array}
$$

Ans.
Ans.
Ans.

ns.
*1-8.
The $800-\mathrm{lb}$ load is being hoisted at a constant speed using the motor M, which has a weight of 90 lb . Determine the resultant internal loadings acting on the cross section through point B in the beam. The beam has a weight of $40 \mathrm{lb} / \mathrm{ft}$ and is fixed to the wall at A.

SOLUTION

$$
\begin{aligned}
& \xrightarrow{+} \Sigma F_{x}=0 ; \quad-N_{B}-0.4=0 \\
& N_{B}=-0.4 \mathrm{kip} \\
& +\uparrow \Sigma F_{y}=0 ; \quad V_{B}-0.8-0.16=0 \\
& V_{B}=0.960 \mathrm{kip} \\
& \varsigma+\Sigma M_{B}=0 ; \quad-M_{B}-0.16(2)-0.8(4.25)+0.4(1.5)=0 \\
& M_{B}=-3.12 \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

Ans.

Ans.

Ans:
$N_{B}=0.4$ kip
$V_{B}=0.960 \mathrm{kip}$
$M_{B}=3.12 \mathrm{kip} \cdot \mathrm{ft}$

$1-9$.

Determine the resultant internal loadings acting on the cross section through points C and D of the beam.

For point D :

$$
\begin{array}{ll}
\pm \Sigma F_{x}=0 ; & N_{D}=0 \\
+\uparrow \Sigma F_{y}=0 ; & V_{D}-0.09-0.04(14)-0.8=0 ; \quad V_{D}=1.45 \mathrm{kip} \\
\varsigma+\Sigma M_{D}=0 ; & -M_{D}-0.09(4)-0.04(14)(7)-0.8(14.25)=0 \\
& M_{D}=-15.7 \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.
Ans.

Ans.

$$
\begin{aligned}
& \text { Ans: } \\
& N_{C}=-0.4 \mathrm{kip} \\
& V_{C}=1.08 \mathrm{kip} \\
& M_{C}=-6.18 \mathrm{kip} \cdot \mathrm{ft} \\
& N_{D}=0 \\
& V_{D}=1.45 \mathrm{kip} \\
& M_{D}=-15.7 \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

1-10.

Determine the resultant internal normal force acting on the cross section through point A in each column. In (a), segment $B C$ weighs $180 \mathrm{lb} / \mathrm{ft}$ and segment $C D$ weighs $250 \mathrm{lb} / \mathrm{ft}$. In (b), the column has a mass of $200 \mathrm{~kg} / \mathrm{m}$.

SOLUTION

(a) $+\uparrow \Sigma F_{y}=0 ; \quad F_{A}-1.0-3-3-1.8-5=0$

$$
F_{A}=13.8 \mathrm{kip}
$$

(b) $+\uparrow \Sigma F_{y}=0 ; \quad F_{A}-4.5-4.5-5.89-6-6-8=0$

$$
F_{A}=34.9 \mathrm{kN}
$$

(a)

(b)

Ans:
(a) $F_{A}=13.8 \mathrm{kip}$
(b) $F_{A}=34.9 \mathrm{kN}$

1-11.
Determine the resultant internal loadings on the cross section at point C. Assume the support reactions at A and B are vertical.

SOLUTION

Support Reactions: Only B_{y} needs to be computed. Referring to the FBD of the entire beam and writing the moment equation of equilibrium about A, Fig. a,

$$
\varsigma+\Sigma M_{A}=0 ; \quad B_{y}(6)-67.5(1.5)-60(4.5)=0 \quad B_{y}=61.875 \mathrm{kN}
$$

Internal Loadings: Using the result of B_{y} and referring to the FBD of segment $B C$ of the beam, Fig. b.

$$
\begin{array}{cc}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{C}=0 \\
+\uparrow \Sigma F_{y}=0 ; & V_{C}+61.875-7.50-60=0 \\
\begin{array}{c}
+ \\
+
\end{array} M_{C}=0 ; & 61.875(3)-7.50(0.5)-60(1.5)-M_{C}=0 \\
& M_{C}=91.875 \mathrm{kN} \cdot \mathrm{~m}=91.9 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.
Ans.

Ans.

(b) $B_{y}=61.875 \mathrm{kN}$

Ans:
$B_{y}=61.875 \mathrm{kN}$
$N_{C}=0$
$V_{C}=5.625 \mathrm{kN}$
$M_{C}=91.9 \mathrm{kN} \cdot \mathrm{m}$
*1-12.
Determine the resultant internal loadings on the cross section at point D. Assume point D is just to the left of the $60-\mathrm{kN}$ force. Assume the support reactions at A and B vertical.

SOLUTION

Support Reactions: Only B_{y} needs to be computed. Referring to the FBD of the entire beam and writing the moment equation of equilibrium about A, Fig. a,

$$
\zeta+\Sigma M_{A}=0 ; \quad B_{y}(6)-67.5(1.5)-60(4.5)=0 \quad B_{y}=61.875 \mathrm{kN}
$$

Internal Loadings: using the result of B_{y} and referring to the FBD of segment $B D$ of the beam, Fig. b,

$$
\begin{array}{lcll}
+\Sigma \Sigma F_{x}=0 ; & N_{D}=0 & & \text { Ans. } \\
+\uparrow \Sigma F_{y}=0 ; & V_{D}+61.875-60=0 & V_{D}=-1.875 \mathrm{kN} & \text { Ans. } \\
\varsigma+\Sigma M_{D}=0 ; & 61.875(1.5)-M_{D}=0 & M_{D}=92.8125 \mathrm{kN} \cdot \mathrm{~m}=92.8 \mathrm{kN} \cdot \mathrm{~m} & \text { Ans. }
\end{array}
$$

The negative sign indicates that \mathbf{V}_{D} acts in the sense that opposite to that shown in the FBD.

> Ans:
> $B_{y}=61.875 \mathrm{kN}$
> $N_{D}=0$
> $V_{D}=-1.875 \mathrm{kN}$
> $M_{D}=92.8 \mathrm{kN} \cdot \mathrm{m}$

1-13.

The blade of the hacksaw is subjected to a pretension force of $F=100 \mathrm{~N}$. Determine the resultant internal loadings acting on section $a-a$ that passes through point D.

SOLUTION

Internal Loadings: Referring to the free-body diagram of the section of the hacksaw shown in Fig. a,
$\pm \Sigma F_{x}=0 ;$
$N_{a-a}+100=0$
$N_{a-a}=-100 \mathrm{~N}$
$+\uparrow \Sigma F_{y}=0 ; \quad V_{a-a}=0$
$\zeta+\Sigma M_{D}=0 ;$
$-M_{a-a}-100(0.15)=0$
$M_{a-a}=-15 \mathrm{~N} \cdot \mathrm{~m}$
Ans.

The negative sign indicates that \mathbf{N}_{a-a} and \mathbf{M}_{a-a} act in the opposite sense to that shown on the free-body diagram.

(a)

[^0]
1-14.

The blade of the hacksaw is subjected to a pretension force of $F=100 \mathrm{~N}$. Determine the resultant internal loadings acting on section $b-b$ that passes through point D.

SOLUTION

Internal Loadings: Referring to the free-body diagram of the section of the hacksaw shown in Fig. a,

$\Sigma F_{x^{\prime}}=0 ;$	$N_{b-b}+100 \cos 30^{\circ}=0$	$N_{b-b}=-86.6 \mathrm{~N}$	Ans.
$\Sigma F_{y^{\prime}}=0 ;$	$V_{b-b}-100 \sin 30^{\circ}=0$	$V_{b-b}=50 \mathrm{~N}$	Ans.
$C+\Sigma M_{D}=0 ;$	$-M_{b-b}-100(0.15)=0$	$M_{b-b}=-15 \mathrm{~N} \cdot \mathrm{~m}$	Ans.

The negative sign indicates that \mathbf{N}_{b-b} and \mathbf{M}_{b-b} act in the opposite sense to that shown on the free-body diagram.

(a)

> Ans:
> $N_{b-b}=-86.6 \mathrm{~N}, V_{b-b}=50 \mathrm{~N}$
> $M_{b-b}=-15 \mathrm{~N} \cdot \mathrm{~m}$

1-15.

Determine the resultant internal loadings on the cross section at point C. Assume the reactions at the supports A and B are vertical.

SOLUTION

Support Reactions: Referring to the FBD of the entire beam, Fig. a,
$\zeta+\sum M_{B}=0 ; \quad \frac{1}{2}(0.8)(18)(6)-\frac{1}{2}(0.8)(9)(3)-A_{y}(18)=0 \quad A_{y}=1.80 \mathrm{kip}$
Internal Loadings: Referring to the FBD of the left beam segment sectioned through point C, Fig. b,

$$
\xrightarrow{ \pm} \Sigma F_{x}=0 ; \quad N_{C}=0
$$

$+\uparrow \Sigma F_{y}=0 ; \quad 1.80-\frac{1}{2}(0.5333)(12)-V_{C}=0 \quad V_{C}=-1.40$ kip \quad Ans.
$\varsigma+\Sigma M_{C}=0 ; \quad M_{C}+\frac{1}{2}(0.5333)(12)(4)-1.80(12)=0$

$$
M_{C}=8.80 \mathrm{kip} \cdot \mathrm{ft} \quad \text { Ans. }
$$

The negative sign indicates that \mathbf{V}_{C} acts in the sense opposite to that shown on the FBD.

Ans:
$A_{y}=1.80 \mathrm{kip}$
$N_{C}=0$
$V_{C}=1.40 \mathrm{kip}$
$M_{C}=8.80 \mathrm{kip} \cdot \mathrm{ft}$

*1-16.

Determine the resultant internal loadings on the cross section at points D and E. Assume the reactions at the supports A and B are vertical.

SOLUTION

Support Reactions: Referring to the FBD of the entire beam, Fig. a,
$\zeta+\Sigma M_{B}=0 ; \quad \frac{1}{2}(0.8)(18)(6)-\frac{1}{2}(0.8)(9)(3)-A_{y}(18)=0 \quad A_{y}=1.80 \mathrm{kip}$
Internal Loadings: Referring to the FBD of the left segment of the beam section through D, Fig. b,

$$
\begin{array}{ll}
+\Sigma F_{x}=0 ; & N_{D}=0 \\
+\uparrow \Sigma F_{y}=0 ; & 1.80-\frac{1}{2}(0.2667)(6)-V_{D}=0 \quad V_{D}=1.00 \mathrm{kip} \\
\varsigma+\Sigma M_{D}=0 ; & M_{D}+\frac{1}{2}(0.2667)(6)(2)-1.80(6)=0 \\
& \\
M_{D}=9.20 \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Ans.
Ans.

(a)

Referring to the FBD of the right segment of the beam sectioned through E, Fig. c,
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad N_{E}=0$
Ans.
$+\uparrow \Sigma F_{y}=0 ; \quad V_{E}-\frac{1}{2}(0.4)(4.5)=0 \quad V_{E}=0.900 \mathrm{kip}$
Ans.
$\varsigma+\Sigma M_{E}=0 ; \quad-M_{E}-\frac{1}{2}(0.4)(4.5)(1.5)=0 \quad M_{E}=-1.35 \mathrm{kip} \cdot \mathrm{ft}$
Ans.

The negative sign indicates that \mathbf{M}_{E} act in the sense opposite to that shown in Fig. c.

(b)

(c)

> Ans:
> $A_{y}=1.80 \mathrm{kip}$,
> $N_{D}=0$,
> $V_{D}=1.00 \mathrm{kip}$,
> $M_{D}=9.20 \mathrm{kip} \cdot \mathrm{ft}$
> $N_{E}=0$,
> $V_{E}=0.900 \mathrm{kip}$,
> $M_{E}=-1.35 \mathrm{kip} \cdot \mathrm{ft}$

1-17.

The sky hook is used to support the cable of a scaffold over the side of a building. If it consists of a smooth rod that contacts the parapet of a wall at points A, B, and C, determine the normal force, shear force, and moment on the cross section at points D and E.

SOLUTION

Support Reactions:

$$
\begin{array}{rc}
+\uparrow \Sigma F_{y}=0 ; & N_{B}-18=0 \quad N_{B}=18.0 \mathrm{kN} \\
\begin{array}{c}
\mathrm{C}+\Sigma M_{C}=0 ;
\end{array} & 18(0.7)-18.0(0.2)-N_{A}(0.1)=0 \\
& N_{A}=90.0 \mathrm{kN} \\
+ & N_{C}-90.0=0
\end{array}
$$

Equations of Equilibrium: For point D

$$
\begin{aligned}
& \xrightarrow{+} \sum F_{x}=0 ; \quad V_{D}-90.0=0 \\
& V_{D}=90.0 \mathrm{kN} \\
& +\uparrow \Sigma F_{y}=0 ; \quad N_{D}-18=0 \\
& N_{D}=18.0 \mathrm{kN} \\
& C_{\hookrightarrow}+\Sigma M_{D}=0 ; \quad M_{D}+18(0.3)-90.0(0.3)=0 \\
& M_{D}=21.6 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Equations of Equilibrium: For point E

$$
\begin{array}{cc}
\xrightarrow{+} \Sigma F_{x}=0 ; & 90.0-V_{E}=0 \\
& V_{E}=90.0 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; & N_{E}=0 \\
C+\Sigma M_{E}=0 ; & 90.0(0.2)-M_{E}=0 \\
& M_{E}=18.0 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.
Ans.

Ans.

> Ans:
> $V_{D}=90.0 \mathrm{kN}$
> $N_{D}=18.0 \mathrm{kN}$
> $M_{D}=21.6 \mathrm{kN} \cdot \mathrm{m}$
> $V_{E}=90.0 \mathrm{kN}$
> $N_{E}=0$
> $M_{E}=18.0 \mathrm{kN} \cdot \mathrm{m}$

1-18.

Determine the resultant internal torque acting on the cross section through points C and D. The support bearings at A and B allow free turning of the shaft.

SOLUTION

$$
\begin{aligned}
\Sigma M_{x}=0 ; & T_{C}-250=0 \\
& T_{C}=250 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

$$
\Sigma M_{x}=0 ; \quad T_{D}=0
$$

Ans.
Ans.

1-19.

Determine the resultant internal loadings acting on the cross section of the hand crank at point A if a vertical force of 50 lb is applied to the handle. Assume the crank is fixed to the shaft at B.

SOLUTION

$$
\begin{array}{lll}
\Sigma F_{x}=0 ; & \left(V_{A}\right)_{x}=0 \\
\Sigma F_{y}=0 ; & \left(N_{A}\right)_{y}+50 \sin 30^{\circ}=0 ; & \left(N_{A}\right)_{y}=-25 \mathrm{lb} \\
\Sigma F_{z}=0 ; & \left(V_{A}\right)_{z}-50 \cos 30^{\circ}=0 ; & \left(V_{A}\right)_{z}=43.3 \mathrm{lb} \\
\Sigma M_{x}=0 ; & \left(M_{A}\right)_{x}-50 \cos 30^{\circ}(7)=0 ; & \left(M_{A}\right)_{x}=303 \mathrm{lb} \cdot \mathrm{in} . \\
\Sigma M_{y}=0 ; & \left(T_{A}\right)_{y}+50 \cos 30^{\circ}(3)=0 ; & \left(T_{A}\right)_{y}=-130 \mathrm{lb} \cdot \mathrm{in} . \\
\Sigma M_{z}=0 ; & \left(M_{A}\right)_{z}+50 \sin 30^{\circ}(3)=0 ; & \left(M_{A}\right)_{z}=-75 \mathrm{lb} \cdot \mathrm{in} .
\end{array}
$$

Ans.
Ans.
Ans.
Ans.
Ans.
Ans.

> Ans:
> $\left(V_{A}\right)_{x}=0$,
> $\left(N_{A}\right)_{y}=-25 \mathrm{lb}$
> $\left(V_{A}\right)_{z}=43.3 \mathrm{lb}$
> $\left(M_{A}\right)_{x}=303 \mathrm{lb} \cdot \mathrm{in}$.
> $\left(T_{A}\right)_{y}=-130 \mathrm{lb} \cdot \mathrm{in}$.
> $\left(M_{A}\right)_{z}=-75 \mathrm{lb} \cdot \mathrm{in}$.
*1-20.
Determine the resultant internal loadings on the cross section at point D. The cable passes over a smooth peg at C.

SOLUTION

Support Reactions: Referring to the FBD of the entire assembly shown in Fig. a,

$$
\begin{array}{lll}
\hookrightarrow+\Sigma M_{A}=0 ; & T(1)-9(1.5)=0 & T=13.5 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; & A_{y}-9=0 & A_{y}=9 \mathrm{kN} \\
\xrightarrow[\rightarrow]{+} \Sigma F_{x}=0 ; & A_{x}-13.5 \mathrm{kN}=0 & A_{x}=13.5 \mathrm{kN}
\end{array}
$$

Internal Loadings: Using the results of A_{x} and A_{y}, segment $A D$ will be considered. Referring to its FBD, Fig. b,

$$
\begin{array}{llll}
\xrightarrow{+} \sum F_{x}=0 ; & N_{D}+13.5=0 & N_{D}=-13.5 \mathrm{kN} & \text { Ans. } \\
+\uparrow \sum F_{y}=0 ; & 9-3-V_{D}=0 & V_{D}=6.00 \mathrm{kN} & \text { Ans. } \\
C+\sum M_{D}=0 ; & M_{D}+3(0.5)-9(1)=0 & M_{D}=7.50 \mathrm{kN} \cdot \mathrm{~m} & \text { Ans. }
\end{array}
$$

The negative sign indicates \mathbf{N}_{D} acts in the sense opposite to that shown in FBD.

> Ans:
> $N_{D}=-13.5 \mathrm{kN}$
> $V_{D}=6.00 \mathrm{kN}$
> $M_{D}=7.50 \mathrm{kN} \cdot \mathrm{m}$

1-21.

Determine the resultant internal loadings on the cross section at point E. The cable passes over a smooth peg at C.

SOLUTION

Support Reactions: Only Tension T in the cable needs to be calculated. Referring to the FBD of the entire assembley shown in Fig. a and writing the moment equation of equilibrium about A,

$$
\varsigma+\Sigma M_{A}=0 ; \quad T(1)-9(1.5)=0 \quad T=13.5 \mathrm{kN}
$$

Internal Loadings: Using the result of T and referring to the FBD of segment $C E$, Fig. b,

$$
\begin{array}{cc}
\xrightarrow{+} \Sigma F_{x}=0 ; & V_{E}+13.5\left(\frac{1}{\sqrt{2}}\right)-13.5=0 \quad V_{E}=3.954 \mathrm{kN}=3.95 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; & -N_{E}-13.5\left(\frac{1}{\sqrt{2}}\right)=0 \quad N_{E}=-9.546 \mathrm{kN}=-9.55 \mathrm{kN} \\
\begin{array}{c}
\text { Ans. } \\
+\Sigma M_{E}=0 ;
\end{array} 13.5(0.5)-13.5\left(\frac{1}{\sqrt{2}}\right)(0.5)-M_{E}=0 & \text { Ans. } \\
M_{E}=1.977 \mathrm{kN} \cdot \mathrm{~m}=1.98 \mathrm{kN} \cdot \mathrm{~m} & \text { Ans. }
\end{array}
$$

The negative sign indicates that \mathbf{N}_{E} acts in the sense that opposite to that shown in the FBD.

> Ans:
> $V_{E}=3.95 \mathrm{kN}$
> $N_{E}=-9.55 \mathrm{kN}$
> $M_{E}=1.98 \mathrm{kN} \cdot \mathrm{m}$

1-22.

The metal stud punch is subjected to a force of 120 N on the handle. Determine the magnitude of the reactive force at the pin A and in the short link $B C$. Also, determine the resultant internal loadings acting on the cross section at point D.

SOLUTION

Member:

$$
\begin{array}{ll}
C+\Sigma M_{A}=0 ; & F_{B C} \cos 30^{\circ}(50)-120(500)=0 \\
& F_{B C}=1385.6 \mathrm{~N}=1.39 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; & A_{y}-1385.6-120 \cos 30^{\circ}=0 \\
& A_{y}=1489.56 \mathrm{~N} \\
\pm \Sigma F_{x}=0 ; & A_{x}-120 \sin 30^{\circ}=0 ; \quad A_{x}=60 \mathrm{~N} \\
F_{A}=\sqrt{1489.56^{2}+60^{2}} & \\
=1491 \mathrm{~N}=1.49 \mathrm{kN}
\end{array}
$$

Segment:

$$
\begin{array}{ll}
\nwarrow+\Sigma F_{x^{\prime}}=0 ; & N_{D}-120=0 \\
& N_{D}=120 \mathrm{~N} \\
+\nearrow \Sigma F_{y^{\prime}}=0 ; & V_{D}=0 \\
C+\Sigma M_{D}=0 ; & M_{D}-120(0.3)=0 \\
& M_{D}=36.0 \mathrm{~N} \cdot \mathrm{~m}
\end{array}
$$

Ans.

Ans.
Ans.

Ans.

> Ans:
> $F_{B C}=1.39 \mathrm{kN}, F_{A}=1.49 \mathrm{kN}, N_{D}=120 \mathrm{~N}$,
> $V_{D}=0, M_{D}=36.0 \mathrm{~N} \cdot \mathrm{~m}$

1-23.

The metal stud punch is subjected to a force of 120 N on the handle. Determine the resultant internal loadings acting on the cross section of the handle arm at point E, and on the cross section of the short link $B C$.

SOLUTION

Member:
$\zeta+\Sigma M_{A}=0 ; \quad F_{B C} \cos 30^{\circ}(50)-120(500)=0$
$F_{B C}=1385.6 \mathrm{~N}=1.3856 \mathrm{kN}$
Segment:
$\downarrow \Sigma F_{x^{\prime}}=0 ; \quad N_{E}=0$
$\Sigma+\Sigma F_{y^{\prime}}=0 ;$
$V_{E}-120=0 ;$
$V_{E}=120 \mathrm{~N}$
$\varsigma+\Sigma M_{E}=0 ;$
$M_{E}-120(0.4)=0 ;$
$M_{E}=48.0 \mathrm{~N} \cdot \mathrm{~m}$
Short link:

$$
\begin{array}{ll}
\pm \Sigma F_{x}=0 ; & V=0 \\
+\uparrow \Sigma F_{y}=0 ; & 1.3856-N=0 ;
\end{array} \quad N=1.39 \mathrm{kN}
$$

Ans.
Ans.
Ans.

Ans.
Ans.
Ans.

[^1]
*1-24.

Determine the resultant internal loadings acting on the cross section at point C. The cooling unit has a total weight of 52 kip and a center of gravity at G.

SOLUTION

From FBD (a)

$$
C^{C}+\Sigma M_{A}=0 ; \quad T_{B}(6)-52(3)=0 ; \quad T_{B}=26 \mathrm{kip}
$$

From FBD (b)

$$
\varsigma+\Sigma M_{D}=0 ; \quad T_{E} \sin 30^{\circ}(6)-26(6)=0 ; \quad T_{E}=52 \mathrm{kip}
$$

From FBD (c)

\[

\]

Ans.

Ans.

Ans.

Ans.

Ans.

> Ans:
> $T_{B}=26 \mathrm{kip}$
> $T_{E}=52 \mathrm{kip}$
> $N_{C}=45.0 \mathrm{kip}$,
> $V_{C}=0$
> $M_{C}=9.00 \mathrm{kip} \cdot \mathrm{ft}$

1-25.

A force of 80 N is supported by the bracket. Determine the resultant internal loadings acting on the cross section at point A.

SOLUTION

Equations of Equilibrium:

$$
\begin{array}{cc}
+\nearrow \Sigma F_{x^{\prime}}=0 ; & N_{A}-80 \cos 15^{\circ}=0 \\
& N_{A}=77.3 \mathrm{~N} \\
\Sigma^{+} \Sigma F_{y^{\prime}}=0 ; & V_{A}-80 \sin 15^{\circ}=0 \\
& V_{A}=20.7 \mathrm{~N} \\
C+\Sigma M_{A}=0 ; & M_{A}+80 \cos 45^{\circ}\left(0.3 \cos 30^{\circ}\right) \\
& -80 \sin 45^{\circ}\left(0.1+0.3 \sin 30^{\circ}\right)=0 \\
& M_{A}=-0.555 \mathrm{~N} \cdot \mathrm{~m}
\end{array}
$$

Ans.

Ans.
or
$\zeta+\Sigma M_{A}=0 ; \quad M_{A}+80 \sin 15^{\circ}\left(0.3+0.1 \sin 30^{\circ}\right)$

$$
-80 \cos 15^{\circ}\left(0.1 \cos 30^{\circ}\right)=0
$$

$$
M_{A}=-0.555 \mathrm{~N} \cdot \mathrm{~m}
$$

Ans.
Negative sign indicates that M_{A} acts in the opposite direction to that shown on FBD.

Ans:

$N_{A}=77.3 \mathrm{~N}$
$V_{A}=20.7 \mathrm{~N}$
$M_{A}=-0.555 \mathrm{~N} \cdot \mathrm{~m}$

1-26.

The curved rod has a radius r and is fixed to the wall at B. Determine the resultant internal loadings acting on the cross section at point A which is located at an angle θ from the horizontal.

SOLUTION

Equations of Equilibrium: For point A

$$
\begin{array}{cc}
\searrow+\Sigma F_{x}=0 ; & P \cos \theta-N_{A}=0 \\
& N_{A}=P \cos \theta \\
\nearrow+\Sigma F_{y}=0 ; & V_{A}-P \sin \theta=0 \\
& V_{A}=P \sin \theta \\
C+\Sigma M_{A}=0 ; & M_{A}-P[r(1-\cos \theta)]=0 \\
& M_{A}=\operatorname{Pr}(1-\cos \theta)
\end{array}
$$

Ans.

Ans.

Ans.

Ans:

$N_{A}=P \cos \theta$
$V_{A}=P \sin \theta$
$M_{A}=\operatorname{Pr}(1-\cos \theta)$

1-27.

The pipe assembly is subjected to a force of 600 N at B. Determine the resultant internal loading acting on the cross section at point C.

SOLUTION

Internal Loading: Referring to the free-body diagram of the section of the pipe shown in Fig. a,

$$
\begin{array}{rll}
\Sigma F_{x}=0 ; & \left(N_{C}\right)_{x}-600 \cos 60^{\circ} \sin 30^{\circ}=0 & \left(N_{C}\right)_{x}=150 \mathrm{~N} \\
\Sigma F_{y}=0 ; & \left(V_{C}\right)_{y}+600 \cos 60^{\circ} \cos 30^{\circ}=0 & \left(V_{C}\right)_{y}=-260 \mathrm{~N} \\
\Sigma F_{z}=0 ; & \left(V_{C}\right)_{z}+600 \sin 60^{\circ}=0 & \left(V_{C}\right)_{z}=-520 \mathrm{~N} \\
\Sigma M_{x}=0 ; & \left(T_{C}\right)_{x}+600 \sin 60^{\circ}(0.4)-600 \cos 60^{\circ} \cos 30^{\circ}(0.5)=0 \\
& \left(T_{C}\right)_{x}=-77.9 \mathrm{~N} \cdot \mathrm{~m} \\
& \left(M_{C}\right)_{y}=153 \mathrm{~N} \cdot \mathrm{~m} \\
\Sigma M_{y}=0 ; & \left(M_{C}\right)_{y}-600 \sin 60^{\circ}(0.15)-600 \cos 60^{\circ} \sin 30^{\circ}(0.5)=0 \\
& \left(M_{C}\right)_{z}+600 \cos 60^{\circ} \cos 30^{\circ}(0.15)+600 \cos 60^{\circ} \sin 30^{\circ}(0.4)=0 \\
& \left(M_{C}\right)_{z}=-99.0 \mathrm{~N} \cdot \mathrm{~m}
\end{array}
$$

Ans.
Ans.
Ans.
Ans.

Ans.

Ans.

The negative signs indicate that $\left(\mathbf{V}_{C}\right)_{y},\left(\mathbf{V}_{C}\right)_{z},\left(\mathbf{T}_{C}\right)_{x}$, and $\left(\mathbf{M}_{C}\right)_{z}$ act in the opposite sense to that shown on the free-body diagram.

Ans:

$\left(N_{C}\right)_{x}=150 \mathrm{~N},\left(V_{C}\right)_{y}=-260 \mathrm{~N}$,
$\left(V_{C}\right)_{z}=-520 \mathrm{~N},\left(T_{C}\right)_{x}=-77.9 \mathrm{~N} \cdot \mathrm{~m}$,
$\left(M_{C}\right)_{y}=153 \mathrm{~N} \cdot \mathrm{~m},\left(M_{C}\right)_{z}=-99.0 \mathrm{~N} \cdot \mathrm{~m}$
$\left(N_{C}\right)_{x}=150 \mathrm{~N},\left(V_{C}\right)_{y}=-260 \mathrm{~N}$,
$\left(V_{C}\right)_{z}=-520 \mathrm{~N},\left(T_{C}\right)_{x}=-77.9 \mathrm{~N} \cdot \mathrm{~m}$,
$\left(M_{C}\right)_{y}=153 \mathrm{~N} \cdot \mathrm{~m},\left(M_{C}\right)_{z}=-99.0 \mathrm{~N} \cdot \mathrm{~m}$
$\left(N_{C}\right)_{x}=150 \mathrm{~N},\left(V_{C}\right)_{y}=-260 \mathrm{~N}$,
$\left(V_{C}\right)_{z}=-520 \mathrm{~N},\left(T_{C}\right)_{x}=-77.9 \mathrm{~N} \cdot \mathrm{~m}$,
$\left(M_{C}\right)_{y}=153 \mathrm{~N} \cdot \mathrm{~m},\left(M_{C}\right)_{z}=-99.0 \mathrm{~N} \cdot \mathrm{~m}$

*1-28.

If the drill bit jams when the handle of the hand drill is subjected to the forces shown, determine the resultant internal loadings acting on the cross section of the drill bit at A.

SOLUTION

Internal Loading: Referring to the free-body diagram of the section of the drill and brace shown in Fig. a,

$\Sigma F_{x}=0 ;$	$\left(V_{A}\right)_{x}-30=0$	$\left(V_{A}\right)_{x}=30 \mathrm{lb}$	Ans.
$\Sigma F_{y}=0 ;$	$\left(N_{A}\right)_{y}-50=0$	$\left(N_{A}\right)_{y}=50 \mathrm{lb}$	Ans.
$\Sigma F_{z}=0 ;$	$\left(V_{A}\right)_{z}-10=0$	$\left(V_{A}\right)_{z}=10 \mathrm{lb}$	Ans.
$\Sigma M_{x}=0 ;$	$\left(M_{A}\right)_{x}-10(2.25)=0$	$\left(M_{A}\right)_{x}=22.5 \mathrm{lb} \cdot \mathrm{ft}$	Ans.
$\Sigma M_{y}=0 ;$	$\left(T_{A}\right)_{y}-30(0.75)=0$	$\left(T_{A}\right)_{y}=22.5 \mathrm{lb} \cdot \mathrm{ft}$	Ans.
$\Sigma M_{z}=0 ;$	$\left(M_{A}\right)_{z}+30(1.25)=0$	$\left(M_{A}\right)_{z}=-37.5 \mathrm{lb} \cdot \mathrm{ft}$	Ans.

The negative sign indicates that $\left(\mathrm{M}_{A}\right)_{z}$ acts in the opposite sense to that shown on the free-body diagram.

> Ans:
> $\left(V_{A}\right)_{x}=30 \mathrm{lb}$,
> $\left(N_{A}\right)_{y}=50 \mathrm{lb}$
> $\left(V_{A}\right)_{z}=10 \mathrm{lb}$
> $\left(M_{A}\right)_{x}=22.5 \mathrm{lb} \cdot \mathrm{ft}$
> $\left(T_{A}\right)_{y}=22.5 \mathrm{lb} \cdot \mathrm{ft}$
> $\left(M_{A}\right)_{z}=-37.5 \mathrm{lb} \cdot \mathrm{ft}$

1-29.

The curved rod $A D$ of radius r has a weight per length of w. If it lies in the horizontal plane, determine the resultant internal loadings acting on the cross section at point B. Hint: The distance from the centroid C of segment $A B$ to point O is $C O=0.9745 r$.

SOLUTION

$$
\begin{array}{lll}
\Sigma F_{z}=0 ; & V_{B}-\frac{\pi}{4} r w=0 ; & V_{B}=0.785 w r \\
\Sigma F_{x}=0 ; & N_{B}=0 & \\
\Sigma M_{x}=0 ; & T_{B}-\frac{\pi}{4} r w(0.09968 r)=0 ; & T_{B}=0.0783 w r^{2} \\
\Sigma M_{y}=0 ; & M_{B}+\frac{\pi}{4} r w(0.3729 r)=0 ; & M_{B}=-0.293 w r^{2}
\end{array}
$$

Ans.
Ans.

Ans.

Ans.

$$
\begin{aligned}
& \text { Ans: } \\
& V_{B}=0.785 w r, \\
& N_{B}=0, \\
& T_{B}=0.0783 w r^{2}, \\
& M_{B}=-0.293 w r^{2}
\end{aligned}
$$

1-30.

A differential element taken from a curved bar is shown in the figure. Show that $d N / d \theta=V, \quad d V / d \theta=-N$, $d M / d \theta=-T$, and $d T / d \theta=M$.

SOLUTION

$\Sigma F_{x}=0 ;$
$N \cos \frac{d \theta}{2}+V \sin \frac{d \theta}{2}-(N+d N) \cos \frac{d \theta}{2}+(V+d V) \sin \frac{d \theta}{2}=0$
$\Sigma F_{y}=0 ;$
$N \sin \frac{d \theta}{2}-V \cos \frac{d \theta}{2}+(N+d N) \sin \frac{d \theta}{2}+(V+d V) \cos \frac{d \theta}{2}=0$
$\Sigma M_{x}=0 ;$
$T \cos \frac{d \theta}{2}+M \sin \frac{d \theta}{2}-(T+d T) \cos \frac{d \theta}{2}+(M+d M) \sin \frac{d \theta}{2}=0$
$\Sigma M_{y}=0 ;$
$T \sin \frac{d \theta}{2}-M \cos \frac{d \theta}{2}+(T+d T) \sin \frac{d \theta}{2}+(M+d M) \cos \frac{d \theta}{2}=0$
Since $\frac{d \theta}{2}$ is can add, then $\sin \frac{d \theta}{2}=\frac{d \theta}{2}, \cos \frac{d \theta}{2}=1$
Eq. (1) becomes $V d \theta-d N+\frac{d V d \theta}{2}=0$
Neglecting the second order term, $V d \theta-d N=0$
$\frac{d N}{d \theta}=V$
QED
Eq. (2) becomes $N d \theta+d V+\frac{d N d \theta}{2}=0$
Neglecting the second order term, $N d \theta+d V=0$
$\frac{d V}{d \theta}=-N$
QED
Eq. (3) becomes $M d \theta-d T+\frac{d M d \theta}{2}=0$
Neglecting the second order term, $M d \theta-d T=0$
$\frac{d T}{d \theta}=M$
QED
Eq. (4) becomes $T d \theta+d M+\frac{d T d \theta}{2}=0$
Neglecting the second order term, $T d \theta+d M=0$
$\frac{d M}{d \theta}=-T$
QED

1-31.

A 175-lb woman stands on a vinyl floor wearing stiletto highheel shoes. If the heel has the dimensions shown, determine the average normal stress she exerts on the floor and compare it with the average normal stress developed when a man having the same weight is wearing flat-heeled shoes. Assume the entire weight is supported only by the heel of one shoe.

SOLUTION

Stiletto shoes:
$A=\frac{1}{2}(\pi)(0.3)^{2}+(0.6)(0.1)=0.2014 \mathrm{in}^{2}$
$\sigma=\frac{P}{A}=\frac{175 \mathrm{lb}}{0.2014 \mathrm{in}^{2}}=869 \mathrm{psi}$

Ans.
Flat-heeled shoes:
$A=\frac{1}{2}(\pi)(1.2)^{2}+2.4(0.5)=3.462 \mathrm{in}^{2}$
$\sigma=\frac{P}{A}=\frac{175 \mathrm{lb}}{3.462 \mathrm{in}^{2}}=50.5 \mathrm{psi}$

Ans.

Ans:

Stiletto shoes:
$\sigma=869 \mathrm{psi}$
Flat-heeled shoes:
$\sigma=50.5 \mathrm{psi}$

*1-32.

Determine the largest intensity w of the uniform loading that can be applied to the frame without causing either the average normal stress or the average shear stress at section $b-b$ to exceed $\sigma=15 \mathrm{MPa}$ and $\tau=16 \mathrm{MPa}$, respectively. Member CB has a square cross section of 30 mm on each side.

SOLUTION

Support Reactions: FBD (a)

$$
\varsigma+\Sigma M_{A}=0 ; \quad \frac{4}{5} F_{B C}(3)-3 w(1.5)=0 \quad F_{B C}=1.875 w
$$

Equations of Equilibrium: For section $b-b, \operatorname{FBD}(b)$

$$
\begin{array}{lll}
+\Sigma F_{x}=0 ; & \frac{4}{5}(1.875 w)-V_{b-b}=0 & V_{b-b}=1.50 w \\
+\uparrow \Sigma F_{y}=0 ; & \frac{3}{5}(1.875 w)-N_{b-b}=0 & N_{b-b}=1.125 w
\end{array}
$$

Average Normal Stress and Shear Stress: The cross-sectional area of section $b-b$, $A^{\prime}=\frac{5 A}{3} ;$ where $A=(0.03)(0.03)=0.90\left(10^{-3}\right) \mathrm{m}^{2}$.
Then $A^{\prime}=\frac{5}{3}(0.90)\left(10^{-3}\right)=1.50\left(10^{-3}\right) \mathrm{m}^{2}$.

Assume failure due to normal stress.

$$
\begin{gathered}
\left(\sigma_{b-b}\right)_{\text {Allow }}=\frac{N_{b-b}}{A^{\prime}} ; \quad 15\left(10^{6}\right)=\frac{1.125 w}{1.50\left(10^{-3}\right)} \\
w=20000 \mathrm{~N} / \mathrm{m}=20.0 \mathrm{kN} / \mathrm{m}
\end{gathered}
$$

Ans.

Assume failure due to shear stress.

$$
\begin{gathered}
\left(\tau_{b-b}\right)_{\text {Allow }}=\frac{V_{b-b}}{A^{\prime}} ; \quad 16\left(10^{6}\right)=\frac{1.50 \mathrm{w}}{1.50\left(10^{-3}\right)} \\
w=16000 \mathrm{~N} / \mathrm{m}=16.0 \mathrm{kN} / \mathrm{m}(\text { Controls })
\end{gathered}
$$

Ans.

> Ans:
> $w=20.0 \mathrm{kN} / \mathrm{m}$
> $w=16.0 \mathrm{kN} / \mathrm{m}$ (Controls $)$

1-33.

The specimen failed in a tension test at an angle of 52° when the axial load was 19.80 kip . If the diameter of the specimen is 0.5 in ., determine the average normal and average shear stress acting on the area of the inclined failure plane. Also, what is the average normal stress acting on the cross section when failure occurs?

SOLUTION

$$
\begin{array}{r}
+\swarrow \sum F_{x}=0 ; \quad V-19.80 \cos 52^{\circ}=0 \\
V=12.19 \mathrm{kip}
\end{array}
$$

$$
+\nwarrow \Sigma F_{y}=0 ; \quad N-19.80 \sin 52^{\circ}=0
$$

$$
N=15.603 \mathrm{kip}
$$

Inclined plane:
$\sigma^{\prime}=\frac{P}{A} ; \quad \sigma^{\prime}=\frac{15.603}{\frac{\pi(0.25)^{2}}{\sin 52^{\circ}}}=62.6 \mathrm{ksi}$
$\tau_{\text {avg }}^{\prime}=\frac{V}{A} ; \quad \tau_{\text {avg }}^{\prime}=\frac{12.19}{\frac{\pi(0.25)^{2}}{\sin 52^{\circ}}}=48.9 \mathrm{ksi}$
Cross section:
$\sigma=\frac{P}{A} ; \quad \sigma=\frac{19.80}{\pi(0.25)^{2}}=101 \mathrm{ksi}$
$\tau_{\text {avg }}=\frac{V}{A} ; \quad \tau_{\text {avg }}=0$

Ans.
Ans.

Ans.

Ans.

Ans:
Inclined plane:
$\sigma^{\prime}=62.6 \mathrm{ksi}$
$\tau_{\text {avg }}^{\prime}=48.9 \mathrm{ksi}$
Cross section:
$\sigma=101 \mathrm{ksi}$
$\tau_{\text {avg }}=0$

1-34.

The built-up shaft consists of a pipe $A B$ and solid rod $B C$. The pipe has an inner diameter of 25 mm and outer diameter of 30 mm . The rod has a diameter of 15 mm . Determine the
 average normal stress at points D and E and represent the stress on a volume element located at each of these points.

SOLUTION

Internal Loadings: Referring to the FBD of the rod and the pipe shown in Fig. a and b respectively,

$$
\begin{array}{lll}
\Sigma F_{x}=0 ; & 20-F_{E}=0 & F_{E}=20 \mathrm{kN} \\
\Sigma F_{x}=0 ; & 60-F_{D}=0 & F_{D}=60 \mathrm{kN}
\end{array}
$$

Normal stress: The cross-sectional area of the rod and the pipe are

$$
\begin{aligned}
& A_{r}=\frac{\pi}{4}\left(0.015^{2}\right)=56.25\left(10^{-6}\right) \pi \mathrm{m}^{2} \\
& A_{p}=\frac{\pi}{4}\left(0.03^{2}-0.025^{2}\right)=68.75\left(10^{-6}\right) \pi \mathrm{m}^{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \sigma_{E}=\frac{F_{E}}{A_{r}}=\frac{20\left(10^{3}\right)}{56.25\left(10^{-6}\right) \pi}=113.18\left(10^{6}\right) \mathrm{Pa}(\mathrm{~T})=113 \mathrm{MPa}(\mathrm{~T}) \quad \text { Ans. } \\
& \sigma_{D}=\frac{F_{D}}{A_{p}}=\frac{60\left(10^{3}\right)}{68.75\left(10^{-6}\right) \pi}=277.80\left(10^{6}\right) \mathrm{Pa}(\mathrm{C})=278 \mathrm{MPa}(\mathrm{C}) \quad \text { Ans. }
\end{aligned}
$$

The state of stress at points D and E can be represented by the volume element shown in Fig. d and c respectively.

(c)

Ans:
$\sigma_{E}=113 \mathrm{MPa}(\mathrm{T})$
$\sigma_{D}=278 \mathrm{MPa}(\mathrm{C})$

1-35.

If the material fails when the average normal stress reaches 120 psi, determine the largest centrally applied vertical load \mathbf{P} the block can support.

SOLUTION

Average Normal Stress: The cross-sectional area of the block is

$$
A=14(6)-2[4(1)]=76 \mathrm{in}^{2}
$$

Thus,

$$
\begin{gathered}
\sigma_{\text {allow }}=\frac{N_{\text {allow }}}{A} ; \quad 120=\frac{P_{\text {allow }}}{76} \\
P_{\text {allow }}=9120 \mathrm{lb}=9.12 \mathrm{kip}
\end{gathered}
$$

Ans.

> Ans:
> $P_{\text {allow }}=9.12 \mathrm{kip}$

[^0]: Ans:
 $N_{a-a}=-100 \mathrm{~N}, V_{a-a}=0, M_{a-a}=-15 \mathrm{~N} \cdot \mathrm{~m}$

[^1]: Ans:
 $N_{E}=0, V_{E}=120 \mathrm{~N}, M_{E}=48.0 \mathrm{~N} \cdot \mathrm{~m}$, Short link: $V=0, N=1.39 \mathrm{kN}, M=0$

