Chapter 2: STATICS—A REVIEW

Solution 2.1

The free-body diagram of the disk is shown in Figure S2.1.
Note: For force balance (equilibrium) the reaction R must pass through O since the other two forces (T and $m g$) intersect at O. Hence, even though we did not neglect friction, the frictional force at B is zero for this system.
Equilibrium Equations:

$$
\begin{align*}
& \rightarrow \sum F_{x}=0: \quad T \sin \theta-R=0 \Rightarrow R=T \sin \theta \tag{i}\\
& \quad \uparrow \sum F_{y}=0: \quad T \cos \theta-m g=0 \Rightarrow T=\frac{m g}{\cos \theta} \tag{ii}
\end{align*}
$$

Note: The moment balance is satisfied in the given configuration. Hence, no new equation is generated through this condition.
Substitute (ii) in (1): $\quad R=m g \tan \theta$

Figure S2.1: Free-body diagram of the disk.
From geometry (right-angled triangle AOB):
$\sin \theta=\frac{r}{L}=\frac{300}{500}=0.6 ; \cos \theta=\frac{400}{500}=0.8 ; \tan \theta=\frac{300}{400}=0.75$;
Substitute numerical values.
(ii): $T=\frac{20 \times 9.81}{0.8}=245 \mathrm{~N}$
(iii): $R=20 \times 9.81 \times 0.75=147 \mathrm{~N}$

Solution 2.2
The forces acting at point C of the traffic light are shown in Figure S2.2.

Figure S2.2: Forces at point C of the traffic light.

From geometry, ACB is a right-angled triangle with $\alpha=\frac{\pi}{2}-\theta$.
Hence,

$$
\sin \theta=\frac{3}{5}=0.6 ; \cos \theta=\frac{4}{5}=0.8 ; \tan \theta=\frac{3}{4}=0.75
$$

Equilibrium Equations:
$\rightarrow \sum F_{x}=0: \quad-T_{\mathrm{A}} \sin \theta+T_{\mathrm{B}} \cos \theta=0 \Rightarrow-T_{\mathrm{A}} \tan \theta+T_{\mathrm{B}}=0$
$\uparrow \sum F_{y}=0: \quad T_{\mathrm{A}} \cos \theta+T_{\mathrm{B}} \sin \theta-m g=0 \Rightarrow \frac{T_{\mathrm{A}}}{\tan \theta}+T_{\mathrm{B}}=\frac{m g}{\sin \theta}$
(ii) - (i): $T_{\mathrm{A}}\left(\tan \theta+\frac{1}{\tan \theta}\right)=\frac{m g}{\sin \theta}$

Substitute numerical values:
(iii): $T_{\mathrm{A}}\left(\frac{1}{0.75}+0.75\right)=\frac{50 \times 9.81}{0.6} \Rightarrow T_{\mathrm{A}}=392 \mathrm{~N}$
(i): $T_{\mathrm{B}}=T_{\mathrm{A}} \tan \theta=392 \times 0.75=294 \mathrm{~N}$

Solution 2.3
Free-body diagram of the disk with the handle is shown in Figure S2.3.
Equilibrium Equations:
$\rightarrow \sum F_{x}=0: \quad-R_{1}+F+P \sin \theta=0$
$\uparrow \sum F_{y}=0: \quad R-m g-P \cos \theta=0 \quad \Rightarrow \quad R=m g+P \cos \theta$
where,
$R_{1}=$ reaction at B (normal because frictionless)
$R=$ normal reaction at A
$F=$ frictional resistance force at A

$$
\begin{equation*}
\int \sum M_{\mathrm{O}}=0: \quad F \times r-P \times L=0 \quad \Rightarrow \quad F=\frac{L}{r} P \tag{iii}
\end{equation*}
$$

Substitute (iii) in (i):
$R_{1}=F+P \sin \theta=\frac{L}{r} P+P \sin \theta$

Substitute numerical values:
(iii): $F=\frac{1.0}{0.5} \times 200=400.0 \mathrm{~N}$
(ii): $R=50 \times 9.81+200 \cos 30^{\circ}=663.7 \mathrm{~N}$
(iv): $R_{1}=\frac{1.0}{0.5} \times 200+200 \sin 30^{\circ}=500.0 \mathrm{~N}$

Figure S2.3: Free-body diagram of disk with handle.

Solution 2.4
Free-body diagram of the shaft with the pulley is shown in Figure S2.4.
Note: Ball bearings do not exert moments or axial forces on the shaft.

Figure S2.4 Free-body diagram of the shaft with pulley.
Equilibrium Equations:
Note the Cartesian coordinate system (x, y, z) located at A.

$$
\begin{aligned}
& \sum M_{x}=0: m g \times r-P \times d=0 \Rightarrow P=\frac{r}{d} m g=\frac{0.2}{0.5} \times 20 \times 9.81=78.5 \mathrm{~N} \\
& \sum M_{z}=0: R_{1} \times L=0 \Rightarrow R_{1}=0 \\
& \sum F_{y}=0: R_{3}+R_{1}=0 \Rightarrow R_{3}=0 \\
& \sum M_{y}=0: m g \times L_{1}-R_{2} \times L+P \times L_{2}=0 \\
& \quad \Rightarrow R_{2}=\frac{m g L_{1}+P L_{2}}{L}=\frac{20 \times 9.81 \times 0.6+78.5 \times 1.2}{1.0} \mathrm{~N}=211.9 \mathrm{~N} \\
& \sum F_{z}=0: R_{4}-m g+R_{2}-P=0 \\
& \quad \Rightarrow R_{4}=m g+P-R_{2}=20 \times 9.81+78.5-211.9=62.8 \mathrm{~N}
\end{aligned}
$$

Solution 2.5

The free-body diagram of the structure is shown in Figure S2.5. Note the directions of x and y as given by the Cartesian coordinate frame.

Figure S2.5: Free-body diagram of the structure.
Note: A smooth roller support cannot exert a lateral force on the structure $R_{1}=$ horizontal component of the reaction at A
$R_{2}=$ vertical component of the reaction at A
$R_{3}=$ reaction at B (vertical, because of smooth roller)
(a)

Equilibrium Equations:

$$
\begin{aligned}
& \rightarrow \sum F_{x}=0:-R_{1}+P \cos \theta=0 \Rightarrow R_{1}=P \cos \theta=200 \times \cos 60^{\circ}=100 \mathrm{~N} \\
& \uparrow \sum F_{y}=0: R_{2}+R_{3}-P \sin \theta=0 \Rightarrow R_{2}+R_{3}=P \sin \theta \\
& \text { i } \sum M_{\mathrm{A}}=0: R_{3} \times L-P \cos \theta \times h-P \sin \theta \times\left(L+\frac{L}{2}\right)=0 \\
& \Rightarrow R_{3}=\frac{h}{L} P \cos \theta+1.5 P \sin \theta=\frac{0.8}{1.0} \times 200 \times \frac{1}{2}+1.5 \times 200 \times \frac{\sqrt{3}}{2} \mathrm{~N}=340 \mathrm{~N}
\end{aligned}
$$

Substitute in (i):

$$
\begin{align*}
R_{2} & =P \sin \theta-R_{3}=P \sin \theta-\left(\frac{h}{L} P \cos \theta+1.5 P \sin \theta\right)=-0.5 P \sin \theta-\frac{h}{L} P \cos \theta \tag{ii}\\
& \Rightarrow R_{2}=-0.5 \times 200 \times \frac{\sqrt{3}}{2}-\frac{0.8}{1.0} \times 200 \times \frac{1}{2}=-167 \mathrm{~N}
\end{align*}
$$

(b)

Make a virtual X-section at D and consider the resulting free body AD. Its free-body diagram is shown in Figure S2.5 (a).

Figure S2.5(a): Free-body diagram of AD.
Note: The shear force V_{1} and the bending moment M_{1} at the X-section D are marked in their +ve directions by convention. F_{1} is marked as + ve when in tension.

Equilibrium Equations:

$$
\begin{aligned}
& \rightarrow \sum F_{x}=0:-R_{1}+F_{1}=0 \Rightarrow F_{1}=R_{1}=P \cos \theta=100 \mathrm{~N} \\
& \uparrow \sum F_{y}=0: R_{2}-V_{1}=0 \Rightarrow V_{1}=R_{2}
\end{aligned}
$$

(ii):

$$
\begin{aligned}
& V_{1}=-0.5 P \sin \theta-\frac{h}{L} P \cos \theta=-167 \mathrm{~N} \\
& f \sum M_{\mathrm{D}}=0: \quad M_{1}-R_{2} \times \frac{L}{2}=0 \Rightarrow M_{1}=\frac{R_{2} L}{2}
\end{aligned}
$$

(ii) $\Rightarrow \quad M_{1}=\left(-0.25 P \sin \theta-\frac{h}{2 L} P \cos \theta\right) \times L=-167 \times \frac{1.0}{2} \mathrm{~N} \cdot \mathrm{~m}=-83.5 \mathrm{~N} \cdot \mathrm{~m}$

Next, make a virtual X -section at E and consider the resulting free body EC. Its free-body diagram is shown in Figure S2.5(b).

Figure S2.5(b): Free-body diagram of EC.
Note: The shear force V_{2} and the bending moment M_{2} at E are marked in their + ve directions, by convention. F_{2} is marked as + ve when in tension.
Equilibrium Equations:

$$
\rightarrow \sum F_{x}=0:-V_{2}+P \cos \theta=0 \Rightarrow V_{2}=P \cos \theta=200 \times \frac{1}{2}=100 \mathrm{~N}
$$

$$
\begin{aligned}
& \uparrow \sum F_{y}=0:-F_{2}-P \sin \theta=0 \Rightarrow F_{2}=-P \sin \theta=-200 \times \frac{\sqrt{3}}{2}=-173 \mathrm{~N} \\
& \text { (i.e., it is in compression) } \\
& \int \sum M_{\mathrm{E}}=0: \quad-M_{2}-P \cos \theta \times \frac{h}{2}-P \sin \theta \times \frac{L}{2}=0 \\
& \Rightarrow M_{2}=-\frac{P}{2}(h \cos \theta+L \sin \theta)=-\frac{200}{2} \times\left(0.8 \times \frac{1}{2}+1.0 \times \frac{\sqrt{3}}{2}\right) \mathrm{N} \cdot \mathrm{~m}=-127 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Solution 2.6

It is seen that both members are two-force members. Assume that the members are in tension (by convention).
From geometry: $\quad \cos \theta=\frac{1}{2} \rightarrow \theta=60^{\circ} ; \sin \theta=\sqrt{3} / 2$
Case (a):
Consider Joint C (Figure S2.6(a)):

Figure S2.6(a): Forces at joint C.

Consider Joint B (Figure S2.6(b)):

$$
\begin{aligned}
\rightarrow \sum F_{x}=0 \rightarrow-R_{B}+F_{B C}=0 \rightarrow \quad & R_{B}=F_{B C}=-\frac{20}{\sqrt{3}} \mathrm{kN} \\
& \text { (i.e., acting to the right) }
\end{aligned}
$$

Figure S2.6(b): Forces at joint B.

Consider Joint A (Figure S2.6(c)):

$$
R_{A}=F_{A C}=\frac{40}{\sqrt{3}} \mathrm{kN}
$$

(acting upward at 60° from left horizontal)

Figure S2.6(c): Forces at joint A.

Case (b):
Joint C (Figure S2.6(d)):
Clearly (by inspection; No need to write equations)

$$
\begin{aligned}
& F_{A C}=0 \\
& F_{B C}=P=20 \mathrm{kN} \quad \text { (i.e., in tension) }
\end{aligned}
$$

Figure S2.6(d): Forces at joint C.

Joint B(Figure S2.6(e)):
Also,

$$
\begin{aligned}
& R_{B}=F_{B C}=20 \mathrm{kN} \quad \text { (i.e., acting to the left) } \\
& R_{A}=0
\end{aligned}
$$

Figure S2.6(d): Forces at joint B.

Solution 2.7

Load $P=200 \mathrm{~g}=200 \times 9.81 \mathrm{~N}=1962.0 \mathrm{~N}$
From geometry: $\theta=22.5^{\circ} ; \quad A C=C D=\sqrt{2} \mathrm{~m}$
Free-body diagram of the structure of interest is shown in Figure S2.7(a).
There are no moments at A and B because they are pin joints (frictionless).

Figure S2.7(a): Free-body diagram of the boom.

Note: BC is a two-force member $==>$ Reaction at B should be along BC, given by B_{x}. This will be further confirmed below, by analyzing joint B .

Equilibrium Equations for Boom:

$$
\begin{align*}
& \rightarrow \sum F_{x}=0 \Rightarrow A_{x}+B_{x}-P \cos \theta=0 \tag{i}\\
& \uparrow \sum F_{y}=0 \Rightarrow A_{y}-P+P \sin \theta=0 \tag{ii}\\
& \curvearrowright \sum M_{A}=0 \Rightarrow-B_{x} \times 1-P \times(1+\sqrt{2})+P \sin \theta \times(1+\sqrt{2})+P \cos \theta \times 1=0 \tag{iii}
\end{align*}
$$

We get:
(ii): $\quad A_{y}=P(1-\sin \theta)=1962.0\left(1-\sin 22.5^{\circ}\right)=1211.2 \mathrm{~N}$
(iii):
$B_{x}=-P(1-\sin \theta)(1+\sqrt{2})=-1962.0\left(1-\sin 22.5^{\circ}\right)(1+\sqrt{2})+1962 \cos 22.5^{\circ}$
$=-1111.1 \mathrm{~N}$
(i): $\quad A_{x}=P \cos \theta-B_{x}=1962.0 \cos 22.5^{\circ}+1111.1 \mathrm{~N}=2923.7 \mathrm{~N}$

Note: Instead of writing (iii) above, we could have taken moments about B, and obtained an equation for A_{x}. Then (i) would give B_{x}.

Method of Joints:

To determine the loads in the remaining rods of the truss, we use the method of joints.
Sign Convention: Rods are in tension.
(b)
(c)

(d)
(e)

Figure S2.7: Forces at: (b) joint B; (c) joint C; (d) joint C; (e) joint A.
Joint B (Figure S2.7(b)):
$\rightarrow \sum F_{x}=0 \Rightarrow B_{x}+F_{B C}=0 \Rightarrow$
Load in $\mathrm{BC}=F_{B C}=-B_{x}=2924.0 \mathrm{~N}$ (tension)
Joint C (Figure S2.7(c)):

$$
\begin{aligned}
& \uparrow \sum F_{y}=0 \Rightarrow-F_{A C} \sin 45^{\circ}=0 \Rightarrow F_{A C}=0 \\
& \rightarrow \sum F_{x}=0 \Rightarrow-F_{B C}+F_{C D}=0 \Rightarrow F_{C D}=F_{B C}=2924.0 \mathrm{~N}
\end{aligned}
$$

Joint D (Figure S2.7(d)):
$\uparrow \sum F_{y}=0 \Rightarrow-F_{A D} \sin \theta+P \sin \theta-P=0$
$\Rightarrow F_{A D}=-\frac{P(1-\sin \theta)}{\sin \theta}=-\frac{1962.0 \times\left(1-\sin 22.5^{\circ}\right)}{\sin 22.5^{\circ}}=-3165.0 \mathrm{~N}$
Note: This means, the member AD is in compression (which should be intuitive).
The same result may be obtained by considering Joint A.
Joint A (Figure S2.7(e)):

$$
\begin{aligned}
& \uparrow \sum F_{y}=0 \Rightarrow A_{y}+F_{A D} \sin \theta=0 \\
& \Rightarrow F_{A D}=-\frac{(1-\sin \theta) P}{\sin \theta}=-3165.0 \mathrm{~N}
\end{aligned}
$$

Solution 2.8

Free-body diagrams of the components of the pipe gripper are shown in Figure S2.8.
(a)

