
1 Newtonian Particle Mechanics

1.1 Problems and Solutions

� Problem 1.1 A meterstick is at rest in a primed frame of reference, with one end at the origin
and the other at x′ = 1.0 m. (a) Using the Galilean transformation find the location of each
end of the stick in the unprimed frame at a particular time t, and then find the length of the
meter stick in the unprimed frame. (b) Repeat for the case that the stick is laid out along the
positive y′ axis, with one end at the origin and the other at y′ = 1.0 m. What is the length
of the stick in the unprimed frame?

Solution
(a) x = x′ + vt′ = x′ + vt, so the left end has xl = 0 + vt = vt, and the right end has
xr = 1.0 m + vt. Therefore the length = xr − xl = 1.0 m.

(b) x′ = 0 for both ends in this case, and y′ = 0 and y′ = 1.0 m always. Therefore
x = x′ + vt = vt for both ends, and y = y′ = 0 and 1.0 m for the two ends, so the length in
the unprimed frame is Δy = Δy′ = 1.0 m. �

� Problem 1.2 A river of width D flows uniformly at speed V relative to the shore. A swimmer
swims always at speed 2V relative to the water. (a) If the swimmer dives in from one shore
and swims in a direction perpendicular to the shoreline in the reference frame of the flowing
river, how long does it take her to reach the opposite shore, and how far downstream has she
been swept relative to the shore? (b) If instead she wants to swim to a point on the opposite
shore directly across from her starting point, at what angle should she swim relative to the
direction of the river flow, and how long would it take her to swim across?

Solution
(a) Her velocity perpendicular to the shoreline is 2V, so the time to reach the opposite shore
is t = D

2V . During this time, she is also swept downstream a distance d = Vt = D
2 .

(b) She must have an upstream component of velocity V to make up for the river flow.
From the Pythagorean theorem, her velocity component across the river is

√
(2V)2 − V2 =√

3V and the angle

θ = tan−1 V√
3V

= sin−1 V
2V

= sin−1 1
2
= 30◦
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4 1 Newtonian Particle Mechanics

Therefore her angle relative to the flow direction is 30◦ + 90◦ = 120◦. Her time to swim
across is t = D√

3V . �

� Problem 1.3 The crews of two eight-man sculls decide to race one another on a river of
width D that flows at uniform velocity V0. The crew of scull A rows downstream a distance
D and then back upstream, while the crew of scull B rows to a point on the opposite shore
directly across from the starting point, and then back to the starting point. They begin
simultaneously, and each crew rows at the same speed V relative to the water, with V > V0.
Who wins the race, and by how much time?

Solution
A: Relative to the shore, A has velocity V0 +V downstream and V−V0 upstream. The time
spent downstream is D

V0+V and upstream D
V−V0

, so the total time for A is

D
V0 + V

+
D

V − V0
=

D(V − V0 + V + V0)

V2 − V2
0

=
2DV

V2 − V2
0
= tA

B: The velocity of B relative to the shore is
√

V2 − V2
0, so the total time across the

stream and back for B is tB = 2D√
V2−V2

0
. Therefore

tA − tB = 2D

⎡
⎣ V

V2 − V2
0
− 1√

V2 − V2
0

⎤
⎦ =

2D
V2 − V2

0

[
V −

√
V2 − V2

0

]
> 0.

So B wins the race by Δt = 2D(V−
√

V2−V2
0)

V2−V2
0

. �

� Problem 1.4 Passengers standing in a coasting spaceship observe a distant star at the zenith,
i.e., directly overhead. If the spaceship then accelerates to speed c/100 where c is the speed
of light, at what angle to the zenith (to three significant figures) do the passengers now see
the star?

Solution
Note that sin θ = c/100

c = 1
100 � θ (sin θ � θ for θ � 1). Alternatively, perhaps the

hypotenuse should be
√

c2 + c2

104 , so tan θ = c/100
c � θ, so θ � 1

100 , the same either way
to three significant figures. �

�� Problem 1.5 (a) Snow is falling vertically toward the ground at speed v. (a) A bus driver
is driving through the snowstorm on a horizontal road at speed v/3. At what angle to
the vertical are the snowflakes falling as seen by the driver? (b) Suppose that the large
windshield in the flat, vertical front of the bus has been knocked out, leaving a hole of
area A in the vertical plane. Given that N is the number of falling snowflakes per unit
horizontal area per unit time, if the bus moves at constant speed v/3 to reach a destination
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5 1.1 Problems and Solutions

at distance d, how many snowflakes fall into the bus before the destination is reached?
(c) To minimize the total number of snowflakes that fall in, the driver considers driving
faster or slower. What would be the best speed to take?

Solution
(a) From the point of view of the ground, snowflakes fall straight down at speed
v, so from the point of view of the bus the snowflakes fall at an angle of
θ = tan−1 V/3

V = tan−1( 1
3 ).

(b) In a time t the volume swept into the bus is V = A(V
3 t) = Ad, so the number of

snowflakes entering is NAd, regardless of speed.
(c) The speed of the bus doesn’t matter. If the bus has higher velocity, more snowflakes

come in per unit time, but the time to travel the distance d is less. The number of snowflakes
entering the bus is the same whether the bus moves fast or slow. �

�� Problem 1.6 The jet stream is flowing due east at velocity vJ relative to the ground. An
aircraft is traveling at velocity vC in the northeast direction relative to the air. (a) Relative
to the ground, find the speed of the aircraft and the angle of its motion relative to the east.
(b) Keeping the same speed vC relative to the air, at what angle would the plane have to
move through the air relative to the east so that it would travel northeast relative to the
ground?

Solution
(a) Note that

vnet,horizontal = vJ + vC cos 45◦ and vnet,vertical = vC sin 45◦

Therefore, since cos 45◦ = sin 45◦ = 1/
√

2,

it follows that

�vnet =
(

vJ + vC/
√

2
)

x̂ + (vC/
√

2)ŷ

(x̂ + ŷ are unit vectors).

θ = tan−1 vC/
√

2
vJ + vC/

√
2

vnet =

√
(vJ + vC/

√
2)2 + (v0/

√
2)2

(b) Note that

vnet sin 45◦ = vC sin (π − θ) = vC sin θ.

Also

vJ = vnet cos 45 + vC cos (π − θ) = vnet cos 45 − vC cos θ

vJ = vc sin θ − vC cos θ = vC(sin θ − cos θ) = vC
√

2 sin (θ − (π/4))
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6 1 Newtonian Particle Mechanics

since

sin (θ − (π/4)) = sin θ cos (π/4)− cos θ sin (π/4) =
1√
2
(sin θ − cos θ).

Thus

sin (θ − (π/4)) =
vJ√
2vC

θ − (π/4) = sin−1 vJ√
2vC

θ =
π

4
+ sin−1 vJ√

2vC
.

For example, suppose vJ = vC cos 45 =
√

2vC; then

θ =
π

4
+ sin−1 1 =

π

4
+

π

2
=

3π
4

,

which is correct. �

� Problem 1.7 The earth orbits the sun once/year in a nearly circular orbit of radius
150 × 106 km. The speed of light is c = 3 × 105 km/s. Looking through a telescope,
we observe that a particular star is directly overhead. If the earth were quickly stopped
and made to move in the opposite direction at the same speed, at what angle to the vertical
would the same star now be observed?

Solution
The speed of the earth’s orbit is found from

F = ma :
−GMsunm

r2
e

= −mv2
e

re

⇒ ve =

√
GMsun

re

Here G = 6.67 × 10−11 m3

kg s2 , Msun = 2.0 × 1030 kg, re = 1.5 × 1011 m. Therefore

ve =

√
(2/3) · 10−10 · 2 · 1030

1.5 · 1011 =
√

8.89 × 108 m/s = 2.98 × 104 m/s

The speed of light is c = 3 × 108 m/s, so since ve/c � 1, θ � ve
c = 2.98×104

3.0×108 ≈ 10−4

radians.
Moving in the original direction the star (apparently overhead) is actually 10−4 radians

in the forward direction. So if the earth were moving in the opposite direction the star
would appear to be θ � 2 × 10−4 radians from the vertical. �
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7 1.1 Problems and Solutions

� Problem 1.8 A long chain is tied tightly between two trees and a horizontal force F0 is
applied at right angles to the chain at its midpoint. The chain comes to equilibrium so that
each half of the chain is at angle θ from the straight line between the chain endpoints.
Neglecting gravity, what is the tension in the chain?

Solution
Balancing forces perpendicular to the chain, F0 = 2T sin θ ⇒ T = F0/2 sin θ, where T is
the tension. �

�� Problem 1.9 An object of mass m is subject to a drag force F = −kvn, where v is its velocity
in the medium, and k and n are constants. If the object begins with velocity v0 at time t = 0,
find its subsequent velocity as a function of time.

Solution
F = −kvn = mdv/dt by Newton’s Second Law. Therefore∫ t

0
dt = −m

k

∫ v

v0

v−ndv ⇒ t = −
(m

k

) v−n+1

−n + 1
|vv0

−kt
m

=
v−n+1 − v−n+1

0
−n + 1

⇒ v−n+1 = v−n+1
0 − kt

m
(−n + 1)

⇒ v ≡ v
−n+1
−n+1 =

[
v−n+1

0 − (−n + 1)
kt
m

] 1
−n+1

.
�

�� Problem 1.10 A small spherical ball of mass m and radius R is dropped from rest into a
liquid of high viscosity η, such as honey, tar, or molasses. The only appreciable forces on
it are gravity mg and a linear drag force given by Stokes’s law, FStokes = −6πηRv, where
v is the ball’s velocity, and the minus sign indicates that the drag force is opposite to the
direction of v. (a) Find the velocity of the ball as a function of time. Then show that your
answer makes sense for (b) small times; (c) large times.

Solution
Let α = 6πηR, so FStokes = −αv. Then Fnet = mg − αv = ma = mdv/dt.

(a) It follows from F = m dv
dt that dt = m dv

mg−αv , where v is positive downward. Then

t =
∫

dt =
∫ v

0

m dv
mg − αv

.

Let u ≡ mg − αv, so du = −αdv. Therefore

t =
∫ mg−αv

mg

m(1/− α)du
u

= − n
α
ln u
∣∣∣mg−αv

mg
=

m
α
ln

(
mg

mg − αv

)
.

Therefore eαt
m = mg

mg−αv , so (mg − αv) = mge−αt/m. Then
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8 1 Newtonian Particle Mechanics

αv = mg
[
1 − e−αt/m

]
so v(t) =

(mg
α

)
(1 − e−αt/m).

(b) For small times e−αt/m ∼= 1 − αt
m = 1 − ( 6πηR

m )t. (series expansion ex = 1 + x +

x2/2!+ · · · ). Therefore

v(t) ∼= mg
α

(
1 −
(

1 − 6πηR
m

t
))

+ · · · ∼= mg
6πηR

(
6πηR

m
t
)

= gt,

which is correct, because for very small times the drag force is negligible.
(c) For large times e−αt/m → 0, so v(t) ∼= mg/6πηR, mg = 6πηRv. In this case

the forces balance, with no additional acceleration. The ball is approaching its terminal
velocity. �

� � � Problem 1.11 We showed in Example 1.2 that the distance a ball falls as a function of time,
starting from rest and subject to both gravity g downward and a quadratic drag force
upward, is

y = (v2
T/g) ln(cosh(gt/vT)),

where vT is its terminal velocity. (a) Invert this equation to find how long it takes the ball
to reach the ground in terms of its initial height h. (b) Check your result in the limits of
small h and large h. (For part (b) it is useful to know the infinite series expansions of the
functions ex, (1 + x)n, and ln(1 + x) for small x.)

Solution
(a) From the given equation, it follows that gy

v2
T
= ln(cosh(gt/vT)), so

cosh
gt
vT

= egy/v2
T ≡ egt/vT + e−gt/vT

2

Multiply by egt/vT : (egt/vT)2 − 2egy/vT(egt/vT) + 1 = 0, which is a quadratic equation in
egt/vT , with solutions

egt/vT = e
gy
v2
T

[
1 ±
√

1 − e−2gh/v2
T

]
using the quadratic equation, and where now h is the initial height and t is the time to reach
the ground. Which sign is correct?

Note that as h → ∞, e−2gh/v2
T → 0 and (1 − e−2gh/v2

T)1/2 → 1 − 1
2 e−2gh/v2

T by the
binomial approximation. So with the lower sign,

egt/vT � egh/v2
T

[
1
2

e−2gh/v2
T

]
=

1
2

e−gh
√

v2
T

which is incorrect, because it implies that t decreases as h increases. So using the upper
sign,

egt/vT = egh/v2
T

[
1 +
√

1 − e−2gh/v2
T

]
.
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9 1.1 Problems and Solutions

Take the natural log of both sides, giving

gt
vT

=
gh
v2

T
+ ln

[
1 +
√

1 − e−2gh/v2
T

]
so

t =
h
vT

+
vT

g
ln
[
1 +
√

1 − e−2gh/v2
T

]
.

(b) Check the result:
For small h, e−2gh/v2

T � 1− (2gh/v2
T), since ex = 1+ x+ x2/2!+ · · · for small x, and so√

1 − e−2gh/v2
T �
√

2gh/v2
T

Therefore

ln

[
1 +
√

2gh/v2
T

]
�
√

2gh/v2
T

since ln(1 + x) � x for x � 1. Thus

t � h
vT

+
vT

g

√
2gh/v2

T �
√

2h
g

for small h. Therefore t =
√

2h
g , uniformly accelerated motion for small times, valid before

the drag force becomes appreciable. For large h,

(1 − e−2gh/v2
T)1/2 � 1 − 1

2
e−2gh/v2

T

so

t � h
vT

+
vT

g
ln2 � h

vT

which is also correct, since then most of the trip is essentially at the terminal velocity vT. �

� Problem 1.12 For objects with linear size between a few millimeters and a few meters
moving through air near the ground, and with speed less than a few hundred meters per
second, the drag force is close to a quadratic function of velocity, FD = (1/2)CDAρv2,
where ρ is the mass density of air near the ground, A is the cross-sectional area of the
object, and CD is the drag coefficient, which depends upon the shape of the object. A
rule of thumb is that in air near the ground (where ρ = 1.2 kg/m3), then FD � 1

4 Av2.
(a) Estimate the terminal velocity vT of a skydiver of mass m and cross-sectional area A.
(b) Find vT for a skydiver with A = 0.75 m2 and mass 75 kg. (The result is large, but a few
lucky people have survived a fall without a parachute. An example is 21-year old Nicholas
Alkemade, a British Royal Air Force tail gunner during World War II. On March 24, 1944
his plane caught fire over Germany and his parachute was destroyed. He had the choice
of burning to death or jumping out. He jumped and fell about 6 km, slowed at the end by
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10 1 Newtonian Particle Mechanics

falling though pine trees and landing in soft snow, ending up with nothing but a sprained
leg. He was captured by the Gestapo, who at first did not believe his story, but when they
found his plane they changed their minds. He was imprisoned, and at the end of the war
set free, with a certificate signed by the Germans corroborating his story.)

Solution
At terminal velocity, FD � 1

4 Av2 � mg in SI units, so vT �
√

4mg
A . Then vT ∼=

√
4mg

A =

2
√

(75)(9.8)
0.75 = 62.6 m/s ∼= 225 km/hr ∼= 140 mi/hr. �

� Problem 1.13 A damped oscillator consists of a mass m attached to a spring k, with
frictional damping forces. If the mass is released from rest with amplitude A, and after
100 oscillations the amplitude is A/2, what is the total work done by friction during the 100
oscillations?

Solution
We can simply see how much energy is lost. The initial amplitude is A, so the initial energy
is all potential energy 1

2 kA2. After 100 oscillations the amplitude is A/2, so the energy is
1
2 k(A/2)2 = 1

8 kA2. The energy lost is 1
2 kA2 − 1

8 kA2 = 3
8 kA2, so the work done by friction

according to the work-energy theorem is − 3
8 kA2. �

� Problem 1.14 The solution of the underdamped harmonic oscillator is x(t) =
Ae−βt cos(ω1t + ϕ), where ω1 =

√
ω2

0 − β2. Find the arbitrary constants A and ϕ in
terms of the initial position x0 and initial velocity v0.

Solution
Given x(t) = Ae−βt cos (ω1t + ϕ), where ω1 =

√
ω2

0 − β2 and A and φ are arbitrary
constants that can be found in terms of the initial conditions x(0) = x0 and v(0) = v0. So
x0 = A cosφ and v0 = A [−β cosφ− ω1 sinφ]. Note sinφ =

√
1 − cosφ2 (using the plus

sign), sinφ =
√

1 − (x0/A)2. Therefore

v0 = A
[
−βx0/A − ω1

√
1 − (x0/A)2

]
= −βx0 − ω1

√
A2 − x2

0

It follows that

A2 − x2
0 =

(v0 + βx0)
2

ω2
1

so A =

√
v2

0 + 2βx0v0 + x2
0(β

2 + ω2
1)

ω1

and

φ = sin−1
[
1 − (

x0

A
)2
]
= sin−1

[
1 − (x0ω1)

2

v2
0 + 2βx0v0 + x2

0(β
2 + ω2

1)

]

φ = sin−1
[

v2
0 + 2βx0v0 + x2

0β
2

v2
0 + 2βx0v0 + x2

0(β
2 + ω2

1)

]
.

�
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11 1.1 Problems and Solutions

�� Problem 1.15 An overdamped oscillator is released at location x = x0 with initial velocity
v0. What is the maximum number of times the oscillator can subsequently pass through
x = 0?

Solution
The overdamped solution is

x(t) = A1eγ1t + A2eγ2t ,

where

γ1,2 = −β ±
√

β2 − ω2
0

with β > ω0.
v(t) = x(t) = A1γ1eγ1t + A2γ2eγ2t .

At t = 0, x = x0 and x(0) = v(0) = v0. Therefore x0 = A1 + A2 and

v0 = A1(−β +
√

β2 − ω2
0) + A2(−β −

√
β2 − ω2

0) .

Eliminate A2, using A2 = x0 − A1, so

v0 = A1(−β +
√

β2 − ω2
0) + (x0 − A1)(−β −

√
β2 − ω2

0) = x0

[
−β −

√
β2 − ω2

0

]

+ A1

[
−β +

√
β2 − ω2

0 + β +
√

β2 − ω2
0

]
= −x0(β +

√
β2 − ω2

0) + A12
√

β2 − ω2
0 .

Therefore

A1 =
v0 + x0(β +

√
β2 − ω2

0)

2
√

β2 − ω2
0

A2 = x0 − A1 =
x02
√
β2 − ω2

0 − v0 − x0(β +
√
β2 − ω2

0)

2
√

β2 − ω2
0

.

A2 =
x0

√
β2 − ω2

0 − v0 − βx0

2
√
β2 − ω2

0

=
−v0 + x0(

√
β2 − ω2

0 − β)

2
√
β2 − ω2

0

x(t) =
v0 + x0(β +

√
β2 − ω2

0)

2
√
β2 − ω2

0

eγ1t +
−v0 − x0(β −

√
β2 − ω2

0)

2
√
β2 − ω2

0

eγ2t.

x(t) =

[
v0 + x0(β +

√
β2 − ω2

0)
]

eγ1t −
[
v0 + x0(β −

√
β2 − ω2

0)
]

eγ2t

2
√
β2 − ω2

0

.
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12 1 Newtonian Particle Mechanics

Without loss of generality, we can assume x0 > 0. Then if the mass reaches x = 0 we
must have [

v0 + x0(β +
√

β2 − ω2
0)

]
eγ1t =

[
v0 + x0(β −

√
β2 − ω2

0)

]
eγ2t

or

e(γ2−γ1)t = e−2
√

β2−ω2
0 t =

v0 + x0(β +
√
β2 − ω2

0)

v0 + x0(β −
√
β2 − ω2

0)
.

Now for t > 0,

e−2
√

β2−ω2
0 t < 1

But for x0 > 0,β > 0, this is only possible if v0 < 0, in fact, v0 + x0(β +
√
β2 − ω2

0) < 0.

So also v0 + x0(β −
√

β2 − ω2
0) < 0 as well.

e−2
√

β2−ω2
0 t =

−|v0|+ x0(β +
√

β2 − ω2
0)

−|v0|+ x0(β −
√

β2 − ω2
0)

=
|v0| − x0(β +

√
β2 − ω2

0)

|v0| − x0(β −
√

β2 − ω2
0)

< 1 .

(Note v0 < 0). There can be only a single time t0 when the mass passes through
x = 0. Plotting x(t) for a strongly negative v0 shows that x(t) can pass from positive
to negative values one time, but then approaches x = 0 asymptotically from below.

�

� Problem 1.16 There are thought to be three types of the particles called neutrinos: electron-
type (νe), muon type (νμ), and tau-type (ντ ). If they were all massless they could not
spontaneously convert from one type into a different type. But if there is a mass difference
between two types, call them types ν1 and ν2, the probability that a neutrino starting out
as a ν1 becomes a ν2 is given by the oscillating probability P = S12 sin

2(L/λ), where S12

is called the mixing strength parameter, which we take to be constant, L is the distance
traveled by the neutrino, and λ is a characteristic length, given in kilometers by

λ =
E

1.27Δ(m)2

where E is the energy of the neutrino in units of GeV (1 GeV = 109 eV) and Δ(m)2 is
the difference in the squares of the two masses in units (eV)2). Neutrinos are formed in
earth’s atmosphere by the collision of cosmic-ray protons from outer space with atomic
nuclei in the atmosphere. The giant detector Super Kamiokande, located deep underground
in a mine west of Tokyo, saw equal numbers of electron-type neutrinos coming (1) from
the atmosphere above the detector (2) from the atmosphere on the other side of the earth,
which pass through our planet on their way to the detector. However, Super K saw more
muon-type neutrinos coming down from above than those coming up from above. This was
strong evidence that muon-type neutrinos oscillated into tau-type neutrinos (which Super
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13 1.1 Problems and Solutions

K could not detect) as they penetrated the earth, since it requires more time to go 13,000 km
through the earth than 20 km through the atmosphere above the mine. (a) Suppose
(Δm)2 = 0.01 eV2 between νμ and ντ type neutrinos, and that the neutrino energy is
E = 5 GeV. What is λ? How would this explain the fewer number of muon neutrinos seen
from below than from above? (b) The best experimental fit is (Δm)2 = 0.0022 eV2. Again
assuming E = 5 GeV, what is λ? Make a crude estimate of the ratio one might expect for
the number of muon neutrinos from below and from above.

Solution
(a) λ = E

1.27Δ(m)2 = 5
1.27(0.01) = 394 km. Therefore since the atmosphere has a thickness of

only about 20 km, few of the muon-type neutrinos would have had time to convert to
τ -type neutrinos, but there would have been several oscillations coming through the
13, 000 km of the earth.

(b) λ = 5/ [1.27(0.0022)] = 1790 km, so very few of the muon neutrinos coming
through the atmosphere only will convert. In penetrating the earth the probability of
conversion is approximately

P = S12 sin
2(L/λ) = S12 sin

2 13, 000
1790

= S12 sin
2 7.26 � 0.687S12

so the probability of remaining a muon-type neutriino is S12 · 100% if penetrating the
atmosphere only, and S12 ·31.3% if penetrating the earth. So a crude estimate of the number
of muon neutrinos from below compared with the number of muon neutrinos from above is
roughly 0.31. This is very rough, because some neutrinos will pass through only a portion
of the earth. �

�� Problem 1.17 The “quality factor” Q of an underdamped oscillator can be defined as

Q = 2π
E

|ΔE|

where at some time E is the total energy of the oscillator and |ΔE| is the energy loss
in one cycle. (a) Show that Q � π/βP, where β is the damping constant and P is the
period of oscillation. Therefore if the damping increases, Q decreases. (b) What is Q for a
simple pendulum that loses 1% of its energy during each cycle? (c) The quality factor also
describes the sharpness of the resonance curve of a driven, lightly-damped oscillator. Show
that to a good approximation Q � ω/(Δω), where Δω is the angular frequency difference
between the two locations on the amplitude resonance curve for which the amplitude is
1/
√

2 that at peak resonance.

Solution
(a) The oscillator follows the solution x(t) = Ae−βt cos(ωt + ϕ) where the energy of the
oscillator is proportional to x2, so E ∝ A2e−2βt. One cycle corresponds to a period of
P = 2π/ω, so
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14 1 Newtonian Particle Mechanics

ΔE = A2e−2βt − A2e−2β(t+P) = A2e−2βt(1 − e−2βP)

� A2e−2βt [1 − (1 − 2βP)] = A2e−2βt(2βP)

(using ex = 1 + x + x2/2!+ · · · ). Thus

Q = 2π
E

|ΔE| =
2πA2e−2βt

A2e−2βt(2βP)
=

π

βP

(b) Q = 2πE/0.01E ∼= 628
(c) The resonance curve is (for the amplitude of oscillation):

C(ω) =
f0√

(ω2
0 − ω2)2 + 4β2ω2

.

The resonance peak is at

CR =
f0

2βω1
� f0

2βω0

for light damping. Suppose

C(ω) =
1√
2

CR =
1√
2
(

f0
2βω0

) =
f0√

(ω2
0 − ω2)2 + 4β2ω2

.

Again, 4β2ω2 = 4β2ω2
0 for a narrow resonance curve, so

√
2(2βω0) �

√
(ω2

0 − ω2)2 + 4β2ω2 so (ω2
0 − ω2)2 � 4β2ω2

0.

Therefore

ω = ω0

[
1 ± 2β

ω0

]1/2

⇒ ω+ = ω0(1 +
β

ω0
) and ω− = ω0(1 − β

ω0
)

by the binomial approximation. Therefore, the difference is

Δω ≡ ω+ − ω− ≡ 2β.

Thus
ω

Δω
∼= ω0

2β
=

(2π/P)
2β

.

ω

Δω
=

π

βP
= Q .

�

� Problem 1.18 Consider the unit vectors x̂, ŷ, r̂, and θ̂ in a plane. (a) Find r̂ and θ̂ in terms
of any or all of x̂, ŷ, x, and y.(b) Find x̂ and ŷ in terms of any or all of r̂, θ̂, r, and θ.
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Solution
By drawing a picture in the x, y plane, it is easy to show that (a)

r̂ = cos θx̂+ sin θŷ (1.1)

θ̂ = − sin θx̂+ cos θŷ (1.2)

where sin θ = y/r = y/
√

x2 + y2 and cos θ = x/
√

x2 + y2. (b) Multiply 6.1 by cos θ and
6.1 by sin θ;

r̂ cos θ = cos2 θx̂+ sin θ cos θŷ

θ̂ sin θ = − sin2 θx̂+ sin θ cos θŷ

Subtract these equations: r̂ cos θ − θ̂ sin θ = x̂, x̂ = r̂ cos θ − θ̂ sin θ.
Then multiply 6.1 by sin θ, 6.1 by cos θ.

r̂ sin θ = sin θ cos θx̂+ sin2 θŷ

θ̂ cos θ = − sin θ cos θx̂+ cos2 θŷ

add these to find ŷ = r̂ sin θ + θ̂ cos θ. �

� Problem 1.19 The mass and mean radius of the moon are m = 7.35 × 1022 kg and
R = 1.74 × 106 m. (a) From these parameters, along with Newton’s constant of gravity
G = 6.674×10−11 m3kg−1s−2, find the moon’s escape velocity in m/s. (b) For a slingshot
boom of length 50 m, what must be the minimum rotation frequency ω to sling material off
the moon, as described in Example 1.3? Take into account both the radial and tangential
components of the payioad velocity when it comes off the end of the boom. Assume
payloads are initially set upon the boom at radius r = 3 meters and with ṙ = 0.

Solution
(a) At escape velocity E = 1

2 mv2
esc − GMm/r = 0, so

vesc =

√
2GM

r
= 2.37 × 103m/s = 2.37 km/s

(b) r = r0 coshωt as shown in the chapter, so coshωt = r/r0 = 50 m/3 m = 16.7. The
velocity of the payload is

v = ṙr̂+ rθ̇θ̂ = r0ω(sinhωt̂r+ coshωtθ̂) ⇒ v2 = v · v
= r2

0ω
2(sinh2 ωt + cosh2 ωt) = r2

0ω
2(2 cosh2 ωt − 1)

(since cosh2 − sinh2 = 1). Therefore,

ω =
vesc/r0√

2 cosh2 ωt − 1
=

(2.37 × 103 m/s)/3 m√
2(16.7)2 − 1

=
0.79 s−1 × 103

23.6
= 33.5 s−1,

so is swinging around very very fast for a 50 m boom. �
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16 1 Newtonian Particle Mechanics

� Problem 1.20 Ninety percent of the initial mass of a rocket is in the form of fuel. If the
rocket starts from rest and then moves in gravity-free empty space, find its final velocity
v if the speed u of its exhaust is (a) 3.0 km/s (typical chemical burning), (b) 1000 km/s,
(c) c/10, where c is the speed of light. (d) If the exhaust velocity is 3.0 km/s, for how long
can the rocket maintain the acceleration a = 10 m/s2?

Solution
The rocket equation is v = v0 + ulnm0

m = 0 + uln m0
0.1m0

= uln10 = 2.30u.
(a) v = 2.30(3.0 km/s) = 6.9 km/s.
(b) v = 2.30(1000 km/s) = 2300 km/s.
(c) v = 2.30(3 × 107 m/s) = 6.9 × 104 km/s.
(d) a = dv

dt = u d
dt (lnm0 − lnm) = −um−1 dm

dt . 10 m/s2 = −(3.0km/s) 1
m (

dm
dt ).

1
m

dm
dt =

− 10 m/s2

3000 m/s = − 1
3 10−2 s−1 =constant. so

∫
dm
m

= − 1
300

s−1t ⇒
∫ m

m0

dm
m

= ln
m
m0

= − t
300

s−1 ⇒

t = 300 ln
m0

m
s = 300 ln

m0

0.1m0
s = 300ln10 s = 690 s = 11.5 minutes.

�

� Problem 1.21 A space traveler pushes off from his coasting spaceship with relative speed
v0; he and his spacesuit together have mass M, and he is carrying a wrench of mass m.
Twenty minutes later he decides to return, but his thruster doesn’t work. In another forty
minutes his oxygen supply will run out, so he immediately throws the wrench away from
the ship direction at speed vw relative to himself prior to the throw. (a) What then is his
speed relative to the ship? (b) In terms of given parameters, what is the minimum value of
vw required so he will return in time?

Solution
(a) Conserving momentum of the traveler and wrench,

(M + m)v0 = Mvf + m(v0 + vw) ⇒ Mvf = (M + m)v0 − m(v0 + vw)

= Mv0 − mvw ⇒ vf =
Mv0 − mvw

M

(> 0 if he is moving away from the ship). His velocity must be − v0
2 to make it back in

40 minutes, since he has twice as long.
(b) vf = − v0

2 = v0 − m
M vw ⇒ vw = (M

m )
3
2 v0. �

�� Problem 1.22 An astronaut of mass M, initially at rest in some inertial frame in gravity-free
empty space, holds n wrenches, each of mass M/2n. (a) Calculate her recoil velocity v1

if she throws all the wrenches at once in the same direction with speed u relative to her
original inertial frame. (b) Find her final velocity v2 if she first throws half of the wrenches
with speed u relative to her original inertial frame, and then the other half with speed u
relative to the frame she reached after the first throw. Compare v2 with v1 from part (a).
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17 1.1 Problems and Solutions

(c) Then find her total recoil velocity vn if she throws all n wrenches, one at a time and in
the same direction, and each with speed u relative to her instantaneous inertial frame just
before she throws it. (d) Find her total recoil velocity in the limit n → ∞, and compare
with the rocket equation.

Solution
(a) vrecoil = u/2

(b) Throw half the wrenches: vrecoil = u/5. Throw the second half: vrecoil = u/4.
Total recoil velocity u

5 + u
4 = 9

20 u.
(c) Throw 1/3 at a time: first throw gives vrecoil = u/8; second throw vrecoil = u/7;

third throw vrecoil = u/6. So throwing 1/3 at a time gives a total recoil

u
[

1
6
+

1
7
+

1
8

]
= u(

78
168

).

One throw: u
2 ; two: u

4 +
u
5 ; three: u

6 +
u
7 +

u
8 ; four: u

8 +
u
9 +

u
10 +

u
11 ; five: u

10 +
u
11 +

u
12 +

u
13 +

u
14 .

(c) In general,

(
1

2n
+

1
2n + 1

+
1

2n + 2
+ · · · 1

2n + n − 1
)u =

n−1∑
n=0

dk
2n + k

→

let x = 2n + k, dx = dk.

u
∫ 3n−1

2n

dx
x

= u ln
3n − 1

2n
→
(
ln
3

2

)
u

as n → ∞. The rocket equation gives

v = u ln
m0

m
= u ln

3/2 m
m

= u ln
3
2

which agrees in the limit n → ∞. �

�� Problem 1.23 We are planning to travel in a rocket for 6 months with acceleration 10 m/s2,
and with a final payload mass 1000 tonnes (1 tonne = 1000 kg). (a) Using a chemically-
fueled rocket with exhaust speed 3160 m/s, what must be the original ship mass m0?
Compare m0 with the mass of the observed universe. (Including so-called “dark matter”,
the mass density is approximately 6 × 10−30 g/cm3 and the observed radius is of order
1010 light years.) (b) Redo part (a) if instead we use a fuel that can be ejected at
3.16 ×107 m/s, about 10 percent the speed of light. (c) How fast would this ship be moving
at the end of 6 months? (d) How far will the ship have gone by this time? Compare this
distance with the distance to the star Alpha Centauri, about 4 light-years away.

Solution
The rocket equation is v = uln(m0/m), so the acceleration of the rocket is

a = dv/dt = u
d/dt(m0/m)

m0/m
=

um0(− dm/dt
m2 )

m0/m
= − u

m
dm
dt

= 10 m/s2.
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18 1 Newtonian Particle Mechanics

Therefore ∣∣∣∣dm
dt

∣∣∣∣ = a dt
u

resulting in m = m0e−at/u, where = 10 m/s2.

(a) If u = 3160 m/s and t = 1
2 year = 1

2 (3.16 × 107s), then m/m0 =

e−10· 1
2 ·3/16×107/3.16×103

= e−6×104 · log10(m/m0) = −5 × 104 log10 e.
Then m = 106 kg so 6 = logm0 − 5 × 104, and so logm0 = 6 + 5 × 104(0.434) =

6 + 21700 = 21706. This gives m0 � 1021,700 kg.
The mass of the observed universe is

∼ 4
3
πR3ρ ∼ 4

3
π(1010c yrs)3(6 × 10−30 g/cm3)

∼ 4π
3
(1010 3 × 108 m/s 3.16 × 107 s)3 6 × 10−30 g/cm3 kg

1000g

(
100 cm

1 m

)3

∼ 4(9.5 × 1025 m)3 6 × 10−30 kg/m3 × 103

∼ 20, 000 × 1048 kg ∼ 2 × 1052 kg

The mass of the ship would be hypothetically much much larger.
(b) If instead u = 3.16 × 107 m/s, then

m/m0 = e−(10/2) 3.16×107

3.16×107 = e−5

log10(m/m0) = −5 log10 e.

m = 106kg ⇒ 6 = logm0 − 5(.484), logm0 = 8.17, m0 = 108.17kg,

which is more reasonable.
(c) At the end of six months

v = u ln(m0/m) = 3.16 × 107 m/s ln
[

108.17

106

]
= 3.16 × 107 m/s ln 102.17

= (3.16)(2.17) ln(10)107 m/s = (6.86)(2.30)× 107 m/s = 15.8 × 107 m/s
= 1.58 × 108 m/s

about half the speed of light. (This is a relativistic speed, so it would be prudent to redo the
problem using equations for relativistic rockets. See Chapter 2 problems.)

(d) At uniform acceleration d = 1
2 at2 = 1

2 (10 m/s2)( 3.16×107 s
2 )2 = 12.5 × 1014 m =

1.25 × 1015 m. One light-year = 3 × 108 m/s · 3.16 × 107 s ∼= 9.5 × 1015 m, so

1.25 × 1015 m = 1.25 × 1015 m(
1c · yr

9.5 × 1015 m
) ∼= 0.13 light-year

So in 6 months, the ship would get only a small fraction of the distance to α Centauri. �

� � � Problem 1.24 A single-stage rocket rises vertically from its launchpad by burning liquid
fuel in its combustion chamber; the gases escape with a net momentum downward, while
the rocket, in reaction, accelerates upward. The gravitational field is g. (a) Pretending that
air resistance is negligible, show that the rocket’s equation of motion is
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m
dv
dt

= −u
dm
dt

− mg

where m is the instantaneous mass of the rocket at time t, v is its upward velocity, and u
is the speed of the exhaust relative to the rocket. (b) Assume that g and u remain constant
while the fuel is burning, and that fuel is burned at a constant rate |dm/dt| = α. Integrate
the rocket equation to find v(m). (c) Suppose that u = 4.4 km/s and that all the fuel is burned
up in one minute. If the rocket achieves the escape velocity from earth of 11.2 km/s, what
percentage of the original launchpad mass was fuel?

Solution
(a) At time t the rocket has mass m and is moving vertically upward at velocity v. At time
t + Δt the rocket has mass m + Δm (with Δm < 0), and is moving upward at velocity
v+Δv. There is also a bit of exhaust −Δm ≡ |Δm| moving downward with velocity u−v.
From Newton’s second law, the change in total momentum is Δp = p(t + Δt) − p(t) =

FΔt = −mgΔt, where the positive direction is upward. Here

Δp = (m +Δm)(v +Δv)− |Δm|(u − v)− mv.

Cancelling some terms and neglecting the second-order product Δm Δv, we find mΔv =

−Δmu − mgΔt. Dividing by Δt and taking the limit Δt → 0, we find the differential
equation given in the problem statement.

(b) Given that dm/dt = −α, where α is a positive constant, it follows that m = m0 −αt.
Also, using the chain rule,

dv
dt

=
u
m
α− g =

dv
dm

dm
dt

= −α
dv
dm

Dividing by −α and integrating over m, we find the velocity as a function of mass during
fuel burning,

v = v0 + uln
m0

m
− g

α
(m0 − m).

(c) Alternatively, we can write the velocity as a function of time during fuel burning,

v = v0 + uln
m0

m0 − αt
− gt.

Here α = mfuel/60 seconds. We find ln(1−mfuel/m0) = −(v+gt)/u = −2.68, from which
we find that the initial percentage in fuel is 93.2%. �

�� Problem 1.25 A rocket in gravity-free empty space has fueled mass M0 and exhaust velocity
u equal to that of a first-stage Saturn V rocket (as used in sending men to the moon):
M0 = 3100 tons = 28 ×106 kg and u = 2500 m/s. The ship’s acceleration is kept constant at
10 m/s2. (a) Find the initial rate of fuel ejection |dM/dt|t=0. (b) After how many minutes
will the ship mass be reduced to 1/e of its initial value? (c) Suppose the ship accelerates as
described for 20 minutes. What percent of its initial mass is left? How many kilograms is
this? What is the ship’s velocity at this time?
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20 1 Newtonian Particle Mechanics

Solution
(a) The rocket equation is v = ulnm0

m , so for constant acceleration we have

a =
dv
dt

= u
d
dt
(lnm0 − lnm) = −u

dm/dt
m

= u
|dm/dt|

m
Therefore

|dm/dt|0 =
am0

u
=

10 m/s2 × 28 × 106 kg
2500 m/s

= 1.1 × 105 kg/s.

(b)

a = u
|dm/dt|

m
= −u

dm/dt
m

, so −
∫

adt
u

=

∫
dm
m

.

Therefore

m = m0e−
a
u t,

gt
u

= 1 ⇒ t =
u
g
=

2500 m/s
90 m/s2 = 250 s = 4.17 minutes.

(c)

m = m0e−
g
u (20 min), (

m
m0

) = e
− 20 min

4.17 min = e−4.80 = 8.23 × 10−3,

so 0.832% of the mass is left.

m = .00823
[
23 × 108kg

]
= 0.23 × 106kg = 230, 000 kg = 230 tons

v = 2500 m/s ln(
3100
230

) = 2500 m/s · ln(13.5) = 6500 m/s = 6.50 km/s

�

�� Problem 1.26 Beginning at time t = 0, astronauts in a landing module are descending
toward the surface of an airless moon with a downward initial velocity −|v0| and altitude
y = h above the surface. The gravitational field g is essentially constant throughout this
descent. An onboard retrorocket can provide a fixed downward exhaust velocity u. The
astronauts need to select a fixed exhaust rate λ = |dm/dt| in order to provide a soft landing
with velocity v = 0 when they reach the surface at y = 0. (a) Explain briefly why Newton’s
second law for the module during its descent has the form

m(t)
dv
dt

= u
∣∣∣∣dm

dt

∣∣∣∣− m(t)g

(b) Find the velocity v of the module as a function of time, in terms of |v0|, u, m0,λ, and g.
(c) During the descent its velocity is v = dy/dt, negative because it is downward. Find an
expression for y(t) in terms of |v0|, g, u,λ, m0, and h.

Solution
(a) The thrust u|dm/dt| behaves like an upward force, while the gravitational force mg is
downward. So Newton’s second law becomes ma = mdv/dt = u|dm/dt| − mg where a is
positive upward.
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(b) Given that dm
dt = −λ, where λ is a positive constant, we have dv

dt =
u
mλ− g = dv

dm
dm
d4t

by the chain rule, so −λ dv
dm = λ u

m − g. Divide by (−λ) and integrate over m:∫ v

v0

dv = −u
∫ m

m0

dm
m

+
g
λ

∫ m

m0

dm

so

v = v0 − gt + uln
(

m0

m0 − λt

)

where v0 = −|v0|.
(c) Integrating once again, starting at y = h,

y − h =

∫ t

0
v dt = −|v0|t −

1
2

gt2 − u
∫ t

0
dt ln

(
m0 − λt

m0

)

Let q ≡ m0−λt
m0

, so then

∫
dt lnq = −(m0/λ)

∫
dq lnq = −m0

λ
[q(lnq − 1)]

so

y = h − |v0|t −
1
2

gt2 +
u
λ

[
(m0 − λt)

(
ln

m0 − λt
m0

− 1
)
+ m0

]

= h − (|v0| − u)t − 1
2

gt2 +
u
λ
(m0 − λt)ln

(
m0 − λt

m0

)
.

�

� � � Problem 1.27 A spaceprobe of mass M is propelled by light fired continuously from a bank
of lasers on the moon. A mirror covers the rear of the probe; light from the lasers strikes
the mirrors and bounces directly back. In the rest-frame of the lasers, nγ photons are fired
per second, each with momentum pγ = hνγ/c, where h is Planck’s constant, c is the speed
of light, and ν is the photon’s frequency. (a) Show that in a short time interval Δt the
change in the probe’s momentum is 2n′γp′γΔt, where n′γ is the number of photons striking
the mirror per second, and p′γ is the momentum of each photon, both in the probe’s frame of
reference. (b) The photons are Doppler-shifted in the probe’s frame, so their frequency is
only ν′ ≈ ν(1−v/c), where v is the velocity of the probe. Show also that n′γ = nγ(1−v/c),
and then show that the ship’s acceleration has the form a = α(1 − v/c)2 where α is
a constant. Express α in terms of M, nγ , and pγ . (c) Find an expression for the probe’s
velocity as a function of time. Briefly discuss the nature of this result as the probe travels
faster and faster.

Solution
(a) The change in momentum of one photon in the instantaneous rest-frame of the probe is
2p′γ , so that is also the change in the probe’s momentum for each photon. During a short
time interval Δt the number of photons striking the probe is n′γΔt, so the overall change of
momentum of the probe is 2p′γ(n′γΔt).
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(b) The frequency of a photon in the probe’s frame is ν′ ≈ ν(1 − v/c) where ν is the
frequency in the moon’s frame. Therefore p′γ = pγ(1− v/c) since for each photon there is
a Doppler shift. Also n′γ = nγ(1 − v/c), where nγ is the number per second in the moon’s
frame, and n′γ is the number per second in the probe’s frame. This can be seen by picturing
a tube of radiation which, in the frame of the moon, has a length of one light-second. This
radiation is directed towards the right, aimed at the probe. Then all the photons in this
tube will pass through the right end of the tube within a time of one second. The probe
is also moving toward the right, so in one second it will move a distance v× 1 second.
Therefore there are some photons in the tube that will not be able to reach the probe in
1 second: namely, those within a length v× 1 second at the left end of the tube, which
comprise a fraction v/c of all the photons in the tube. Those reaching the probe in 1 second
are therefore a fraction (1 − v/c) of the total.

Now the overall change of momentum of the probe in time Δt is
ΔP
Δt = MΔv

Δt = Ma, so its acceleration is

ΔP/Δt
M

=
2n′γp′γ

M
=

2nγpγ
M

(1 − v/c)2 ≡ α(1 − v/c)2

where α = 2nγpγ/M.
(c)

dv
dt

= α(1 − v/c)2 ⇒
∫

dv
(1 − v/c)2 = α

∫
dt .

Let

u ≡ 1 − v/c ⇒ du = −dv/c,−
∫

du c
u2 = αt ,

t = − c
α

∫
du
u2 =

c
αu

∣∣∣u
u0

,
αt
c

=
1
u
− 1

u0

=
1

1 − v/c
− 1 ⇒ 1 − v/c = (1 +

αt
c
)−1 ⇒ v/c = 1 − 1

1 + αt/c
.

v
c
=

αt/c
1 + αt/c

.

At first the probe accelerates quickly, with acceleration α. The acceleration falls off with
time, because each photon has been Doppler-shifted to the red, and also fewer photons per
second strike the probe as the probe moves faster and faster. �

�� Problem 1.28 A proposed interstellar ram-jet would sweep up deuterons in space, burn them
in an onboard fusion reactor, and expel the reaction products out the tail of the ship. In a
reference frame instantaneously at rest relative to the ship, deuterons, each of mass m,
approach the ship at relative velocity v. They are burned, and the burn products, with
essentially the same total mass, are ejected from the rear of the ship at velocity v + u. The
ship mass M stays constant, the cross-sectional area of the ship is A, and the number of
deuterons per unit volume is n. (a) Find dN/dt, the number of deuterons swept up per unit
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