February, 2016

This file contains answers to exercises from the end of Chapter 1 of the $4^{\text {th }}$ Edition of Object Oriented Data Structures using Java. This file is intended for use only by instructors who have adopted the textbook. Please do not post these answers on the internet. All instructors should be aware that it is possible that these answers will be made public through carelessness or mischievous intent.

Note that we include answers for most, but not all of the exercises. We do not include answers if the question is just a matter of opinion or of personal experience. In such cases we simply state that "answers will vary". Sometimes an exercise is really a "drill" rather than a question, so we don't answer it. We do not provide answers for major coding projects, although we may provide guidelines. Sometimes we do not provide answers for medium sized coding projects, although we hope to provide all of these eventually (check back later; or even better, send us your suggested solution and we will include it and give you credit if it is appropriate). Finally, in cases where the answer to a question is found easily in the body of the text we sometimes indicate the page number where the answer can be found, rather than repeating the information here. The intent of such questions is for the students to describe the information in their own words.

Chapter One - Getting Organized

Many of the questions in this chapter's exercises are "thought questions." The answers given here are typical or suggested responses, but they are not the only possible answers.

Section 1 - Classes, Objects, and Applications

1. Many of the winners' contributions dealt with programming, starting with Perlis in 1966, Dijkstra in 1972, and Knuth in 1974. But the list goes on. The winners whose work dealt primarily with objectorientation are Wirth in 1984, Ole-Johan Dahl and Kristen Nygaard in 2001 and Kay in 2003.
2. See http://www.omg.org/gettingstarted/what_is_uml.htm\#12DiagramTypes.
3. A class defines a structure or template for an object or a set of objects. An object is an instance of a class. An example is a blueprint of a building and the building itself. Another example, from the text, of a Java class/object is the Date class and the myDate, yourDate, ourDate objects.
4. See pages 5 and 6 .
5. According to the program, the number of days between $1 / 1 / 1900$ and $1 / 1 / 2000$ is 36524 . Clearly there are 24 leap years.

According to the program, the number of days between $1 / 1 / 2000$ and $1 / 1 / 2100$ is 36525 . So that represents 25 leap years.

The difference is because 1900 , being divisible by 100 is not a leap year, whereas 2000, even though it is divisible by 100 , is still a leap year because it is divisible by 400 .
6. a. Answers will vary.
b. Answers will vary.
c. The number of days between $11 / 21 / 1783$ and $7 / 20 / 1969$ is 67811
9. There are many possible "correct" answers for each part of this question. The intent was not for the student to create code, but rather just identify a good set of variables and methods. Here are sample answers for parts a and b :
a. Time Counter
instance variables: protected int totalMinutes; protected int counter;
methods: public void addTime(int minutes, int seconds);
public void addTime(int minutes);
public int getTotalTime();
public int getAvgTime();
b. Basketball Statistics
instance variables: protected int score;
protected int fieldGoalsAttempted;
protected int fieldGoalsMade;
protected int freeThrowsAttempted;
protected int freeThrowsMade;
methods: public void fieldGoalMissed();
public void freeThrowMissed();
public void fieldGoalMade(int value); // value indicates 2 or 3 point shot
public void freeThrowMade();
public int getScore();
public float fieldGoalPercentage();
public float freeThrowPercentage();

Section 2 - Organizing Classes

14. See pages $12-16$.
15.a. AbstractList
b. 3
c. 31
d. 16
e. AbstractCollection
15.

a. Legal - getDay is a public method that returns an int
b. Legal- getYear is a public method that returns an int
c. Illegal - increment is not defined for Date objects
d. Legal - increment is defined for IncDate objects
e. Legal - object variables can be assigned to objects of the same class
f. Legal - subclasses are assignment compatible with the superclasses above them in the class hierarchy
g. Illegal - superclasses are not assignment compatible with the subclasses below them in the class hierarchy
19. See pages $19-21$.
20. a. 15 plus 2 in support.cards
b. 5
c. i. java.io, java.util, ch 05 .collections, support
ii. It uses the wild card character to import all needed classes from the first three packages but it
explicitly imports the FamousPerson class from the support package
d. i. It depends on the compiler whether a syntax error is generated but in any case other classes will not be able to import and use the class.
ii. Most compliers will simply compile the class although depending on settings you may receive a warning.
iii. You get a syntax error since the compiler cannot locate the needed Date class.
21.
a. Yes
b. Labels
c. Length
d. records
e. media

Section 3 - Exceptional Situations

22. See page 27.

Section 4 - Data Structures

26. Answers will vary.
27. In order of occurrence:
alphabetized list of buttons wall map
connections of trains ticket line direct access to car 4 walking through train cars tray holder
Pez dispenser
candy machine button
sorted list
two dimensional array
linked list
queue
direct access to an array location
traversing a linked list
stack
stack
accessing an array
28. Answers will vary.
29.

a. Nodes are airports; edges connect airports that have flights available between them
b. Nodes are countries; edges connect countries that border each other
c. Nodes are research articles; directed edges connect articles to the articles that they reference
d. Nodes are actors; edges connect actors to the actors they have appeared in the same movies as them
e. Nodes are the computers; edges show a direct network link between the two computers
f. Nodes are rooms; edges are between rooms which have a connecting tunnel
g. Nodes are web pages; directed edges represent a hyperlink from the first page to the second

Section 5 - Basic Structuring Mechanisms

30.a.

address	word
$\ldots \ldots$	
099	
100	3
101	'c' \mid 'a' \mid 't' \mid
\ldots	\ldots
123	10
124	20

	\cdots	
$\operatorname{str} 1:$	135	100
	136	

b.

	address	word		
	-••			
	099			
	100			
	101	'c' \| 'a'	't'	
	. .			
	123	10		
	124	10		
	-			
str 1 :	135	100		
str2:	136	100		

31. See pages 35-36
32. The output of the code would be
```
5/5/2000
5/5/2000
5/6/2000
5/6/2000
```

33. See page 36.
34. The output of the code would be
```
not equal
equal
equal
```

35. A program that meets the specifications is
```
//---------------------------------------------------------------------------
// Exer35.java by Dale/Joyce/Weems Chapter 1
//
// Solves Chapter 1, Exercise 35
//---------------------------------------------------------------------------
public class Exer35
{
    public static void main(String[] args)
    {
        int[] squares = new int[10];
        for (int i = 0; i < 10; i++)
            squares[i] = i * i;
```

```
        for (int i = 0; i < 10; i++)
        System.out.println(squares[i]);
        }
}
```

36. A program that meets the specifications is
```
//-----------------------------------------------------------------------------------
// Exer36.java by Dale/Joyce/Weems Chapter 1
//
// Solves Chapter 1, Exercise 36
//-----------------------------------------------------------------------------
public class Exer36
{
        public static void main(String[] args)
        {
            Date[] dates = new Date[10];
            int month, day, year;
            for (int i = 0; i < 10; i++)
                dates[i] = new Date(12, i+1, 2005);
            for (int i = 0; i < 10; i++)
                System.out.println(dates[i]);
    }
}
```

This solution assumes that the Date class is "visible" to the Exer36 application.

Section 7 - Comparing Algorithms: Big-O Analysis

39. Best Case: all answers are 1 - just need to be very lucky

Worst Case:

	Sequential	Binary
a. 10	10	4
b. 1,000	1,000	10
c. $1,000,000$	$1,000,000$	20
d. $1,000,000,000$	$1,000,000,000$	30

40. Answers can vary. The important thing is that the student's answer is clear, and consistent.
41. The answer to the last part of the questions is:
a. approximately 1.37
b. approximately 8.87
c. 4
d. approximately 5.5
42.

a. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
b. $\mathrm{O}(\mathrm{N} 2)$
c. $\mathrm{O}\left(\mathrm{N}^{5}\right)$
d. $\mathrm{O}(\mathrm{N} 2)$
e. $\mathrm{O}\left(\mathrm{N}^{4}\right)$
f. $\mathrm{O}(\mathrm{N} 2)$
43.
a. $\mathrm{O}(\mathrm{N})$
b. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
c. $\mathrm{O}\left(\log _{2} \mathrm{~N}\right)$
d. $\mathrm{O}(1)$
e. $\mathrm{O}(\mathrm{N})$
f. $\mathrm{O}(\mathrm{N})$
44. The order of growth is $O(N)$. $A O(1)$ approach can be created based on the formula for the sum of the integers between $1 \ldots \mathrm{~N}$ being $\mathrm{N}(\mathrm{N}+1) / 2$.
45.
a. $\mathrm{O}(1)$
b. $\mathrm{O}(\mathrm{N})$
c. $\mathrm{O}(\mathrm{N}) \ldots$ even though on average takes $\mathrm{N} / 2$ steps, that is still $\mathrm{O}(\mathrm{N})$

46.27	15	83	12	104	28	57	30
12	15	83	27	104	28	57	30
12	15	83	27	104	28	57	30
12	15	27	83	104	28	57	30
12	15	27	28	104	83	57	30
12	15	27	28	30	83	57	104
12	15	27	28	30	57	83	104
12	15	27	28	30	57	83	104

End of Selected Answers to Chapter 1 Exercises

