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Solutions to the problems of
Chapter 2

2.1 Let P, be the probability of correct classification. Then

P. =Y P(x € Ryw) =Y Plw)P(x € R;|w;)

i=1 =1

or
M M
P. = ZP(%)/ P(x|w;)dx = Z/ P(w;)p(x|w;)dx
i=1 i =17
or
M
P. = Z/ P(w;|z)p(x)dzx
i—1 7 Ri
For minimum classification error P., P. must be maximum (P, + P, = 1).

Thus P, is maximized if the regions R; is chosen so that in each region the
corresponding integrals, which are all positive, have the maximum possible
value. That is

R; : P(wilz)p(x) > P(wjlz)p(x) Vi#j

R; . Plwilz) > Plwjl®) Vi#j

2.2 From the theory we have

p(]wr)
p(@los)
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Taking the logarithm of both sides

Inp(x|w) — Inp(x|lws) > (<) lnigﬁ;ii

or
—x? x—1)32
e
202 202

where constants have been omitted. Hence
—2r+1 > (<)20%In

or
. 1 2P(W2)>\21
o= 2 7 P(u)l)>\12

2.3 From the respective definitions we have
r = )\11/R P(wy)p(x|w)dz + )\gl/R P(ws)p(x|ws)dx +
1 1

Mo /R Plep(alo)de + /R P(ws)p(|ws)dz

2

which from the definitions of £; and €5 become

r = AP(w)(1 —e1) + A P(wa)ea + AaP(wr)er + A P(w2)(1 — &)
and finally

r = AM1P(w1) + Ao P(w2) + P(w1)(A2 — A11)er + P(wz2)(Aa1 — Aa2)en

2.4 By the definition of the probability

;P(wi|m) =1

since classes cover all space. Thus the maximum P(w;|x) has to be larger
than ﬁ, otherwise the sum will be smaller than one. Let us now consider
the probability of correct classification

M

P.=> P(xeRyw) = ZP(wi)/R p(x|w;)dx

i=1 i=1 i
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or by the definition of R;,

or

Hence

2
PO xp( 0y — *0 ]

2 2 2
—To 91 "o

2 2 2
207 o5 203

and finally

2

20303 I 7

To = 4| 50— 1In—
2 2 2

01 —03 03

2.6 From the problem requirements we have

g1 = /2P(w1)p(w|w1)dw =¢

R

€9 = /R1 P(ws)p(x|ws)dx

éds

Wgt%%nagagl taa)

Thus, minimizing €5 subject to the first constraint equation is equivalent

with minimizing

= / Yp(e|ws)dz + 9(/ P(w)p(z|w)dz — ¢)

Ry

= P(ws) — e+ R2(9P(m)p(a:|w1) — P(w

2)p(x|ws))d
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Since the first two terms do not depend on R,, () is minimized if R is chosen

so that
Ryt P(wa)p(x|wz) > 0P (wi)p(x|wr)
or
R, . RE®)
p(wilx)

It remains to specify 6. In the general case, this is not easy to be computed,
however its value must be chosen so that the integral in the constraint equa-
tion to be equal to e.

2.7 a) Tt suffices to compute the Mahalanobis distance of [1.6,1.5]” from
mean vectors of the classes. We have

[ 09 02
= [—0.2 0.6

Thus
di = 2.05 dy = 0.64 ds = 3.14

Hence [1.6,1.5]7 is assigned to ws.
b) According to theory it suffices to compute the eigenvalues and eigenvectors
of 3. These are

)\1 - 1, )\2 =2

v, = [0.89, —0.45)7
vy = [0.45, 0.89]"

Thus the ellipses, centered at p, and axis
2\//\10'1)1 and 2\//\20’02

2.8 The inverse of X is

5 =25 =25
—-25 5 2.5
—25 2.5 5

Since the covariance matrix is the same in both classes the discriminant
functions are linear given by

1
gi(x) = :BTZ_lui — 5#?2_1% + In P(w;)
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where terms independent of the classes have been dropped. For our case we
have

g1(x) = In P(w;)
and
gg(a:) = 25$2 + 25I3 — 1.25 + lnng)

The decision plane is

g2(x) — gi(x) = 0
Observe that this is basically a 2-dimensional problem due to the specific
choice of p; and p,. This is not necessarily the case for other choices.

2.9 The Bayesian classifier relies on the test

Taking the logarithm, assignment to the class depends on the value of
u = Inljy = Inp(xjw) — Inp(x|ws)

whether it is positive or negative. For our specific case we have that

_ 1 _
u=z"% 1(“1 _N2) - 5(“1 + Nz)TE 1(#1 _Nz)

and the probability of error equals

1 1
P, = §P(u <0,z €wy)+ §P(U > 0,2 € wy)
The variable u is also normally distributed, since it is a linear combination
of random variables z1, ..., z;, which are themselves jointly Gaussian, (Pa-
poulis). Its mean value depends on whether @ originates from w; or ws. The
respective mean values are.

_ 1 _
Eilu] = pi S (py — py) — 5t + 1) S (g — )
1

= (p — N2)Tzil<l~'ll — M) =

d
2

2
m

N | —

and similarly
1
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The corresponding variances are

0%, = Erl(u— Ei[u])?] = Ex[(py — po) 57N @ — py) (2 — )87 (g — )]
= (N1 - NQ)TZ_I(N1 - MQ) = dzn
Similarly
03, = do,

Thus, the probability of error is now given by

(u—3d2,)?

m

B 1/0 1 exp(— 4~ 2%m)”
T2 Vord, P 22,

1/oo 1 ( (u—I—%dfn)Q)d
- eXpl\——————)au
2Jo 2rmd,, P 2d2,

which after changing the variables and taking into account the symmetry of
Gaussian becomes

P, Jdu +

p oo 1 ( ZQ)d
= —— exp(——)dz
L V2r PV

2.10 We have

p(x|wr) > (<) P(wz) Ao1 — Mg

=0
p(x|ws) P(wy) A2 — A\

le =
Taking the logarithm, for the Gaussian pdf’s the above becomes

1 1
—5(33 — ) "E N (@ — ) — 5 In |3 [+
1 1
i(m — )TN — ) + §ln 2] > (<) Ind
or

>
B 2lS1) = 50 +In < ()~ 2
2

2.11 Rearrangement of the previous equation results in
(1 — )27 > (<) O

1
© =Inf+ 5(”[-‘/1“2*1 — [|pa|]2-1)
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2.12 a) The Bayesian classifier that minimizes the error probability is given
in this case by the minimizing Euclidean distance classifier. Thus, assign
T € W if

o — ] < [l — pol|

b) In this case « is classified to wy if
Pl | Plwn) dn
p(xlws) ~ Plwri) Ar2
where Ao = 1 and A\y; = 0.5. Thus following similar arguments as in theory,

for Bayesian classification for normal distributions, we conclude that the
decision hyperplane is

gi2(x) = wT(fL‘ — )

W = py — Mo
and 1 P(wy)A
Wi)A21 Mg — My
Ty = — + —o?ln
0= gt o e T — ol

c¢) The following MATLAB function takes as input the variance (s), the mean
(m) and the number of samples N. The output is a vector 1xN, whose ele-
ments are the N samples of the 1-D Gaussian. For 2-D independent variables,
combine two samples generated above, in a single vector

x = |11, 19]"

Function x=gaussian(m,s,N);

x=randn(1,N);
x=x*sqrt(s)+m;

2.13 Generate, first, normally distributed random vectors with statistically
independent components. That is, each component of x;, x5 of the vector
[w1, 22]T follows a N(1,1) for class w; and N (1.5,1) for class wo. Then each
vector is transformed as
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Then the covariance matrix of y is

El(y — )y —p,)'] = AE[(x — p,)(x — p,)"]AT
=AAT = %

2.14 The constant Mahalanobis distance curves around, say, ., are

1 _
dn(x) = g(w_ﬂz)TZ He—py) = ¢
The gradient with respect to  at x is

od,, ()
ox T=x,

= E_I(CI’O — ) =Y

Let, also , * — &y be any vector on the hyperplane, which according to the
theory is vertical to

w = 37y — py)
However

1,1 1
y=23 1(§(u1+uz)—uz) = 3% "y — o)

is parallel to w, hence vertical to @ —x(, where for simplicity P(w;) = P(ws)
has been assumed.

2.15 The only possible cases for overlap between the two pdf’s are shown
in the figure 2.1. Other overlap possibilities are not possible, due to the
constraint that the area under each pdf must be 1. The error probability is
the area of the overlap shaded regions. For the (a) and (b) cases this area is
bounded by

b1 (z — p)?
P, < / ST gy -
2

/_C;O ! exp(—i(z il )dx

2o 202

b—p
|
Pe</ exp(—2)%dz —
= T
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a
(a) (b)

a p a p
(©) (d)

Figure 2.1: Problem 2.15

For the (c) and (d) cases the probability of error is equal to G (b?TM) — G(&=8)

2.16
Olnp(x;0) Op(z;0) 1

00 00 p(x:0)
Thus, by definition of the mean value

o Op(x;0) p(x;0) >~ Op(x;0) ,
w= /,oo 20 p(; e)dm - /,oo 06 =
o1

8 0 / (z;0)dx = 20 =0
2.17 The likelihood function is

P(X;q) = [[¢"(1 — )"~

or
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10
or N N
N NN Zz‘: Z; N — Z T
qzz':1 1(1 — q)(N Zi:l 1)( 1 — =1 ) =0
q l—q
The solutions ¢ = 0, 1 result in a minimum of P(X;¢). The maximum comes
from
Z{i1 r; N -— Z]i1 L 1
: — : =0=q= =) x
q l—ygq N ;
2.18

N N
= > Inp(ay; p) = 552 > (@ — p)?
=1 ]

Where constants have been omitted

OL(p) 1 & 1 & N
“ou —;;(Ik N)—;;Ik S2H
PL(w) N
oz o2

Thus, the Cramer - Rao bound for the variance of the ML estimate is a

N
We know from theory, that the ML estimate of the mean is

1N
T = — T
N;k

which is on unbiased estimate of the true mean and the variance of the
estimate (See chapter 5) is ”—]5 Thus, for this case the ML estimate is efficient.
If the unknown is the variance we have

ol 1 ¥ N
= Zlnp(xk; = —Z rp — p)? — = Ino?
i=1 20° 2 2
OL(c?) N 1 X )
507~ T2 T 2

i=1

Equating the above to zero gives the estimator

N
Zxk—
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which is the ML estimate of the variance if the mean is known. This is also
an unbiased estimator

1 i )
—>» El(xy — =0
N =1
For the Cramer-Rao bound we have
0*L(c?) 1
I = iy gy e
N N N
- _|_ - =
204 ot 204

Thus, the variance of any estimator of o2 is lower bounded by % It turns
out that the ML estimate of the variance of a normal distribution is also
efficient. Indeed, we have

N
Z Tk —
=1

N&?

o

<$’“;“>2

'MZ

=1

However, each of the random variables % follows a A/(0,1) and they
are independent. Hence the random variable Z (“3’“0 £)2 follows a chi-square
distribution with N degrees of freedom and its variance is equal to [Papoulis
pl17] 2N. That is

var( 3 ) = 2N

or A
20

~2y _ 40

var(c°) = N

Which is equal to the Cramer-Rao bound.

2.19 We shall focus on the simplest case where ¥ = ¢2I. The likelihood
function is

L(6) = L(p,0%) = > Inp(xs; p,0?)
k=1
N 1
= -3 Ino?® — 292 Y (w — ) (z, — )


https://ebookyab.ir/solution-manual-pattern-recognition-theodoridis-koutroumbas/

RSURRARNE R BT M2 BHBRRAIGE 4868935 - (e AR Ide K NILAPRAR taa)

12

The unknown parameter is now 87 = [u”, 0]

L) [ 2= o i (i — ) »
00 | or® | T | N D @ T@e ) |
902 202 204
Solving the above system w.r. to g and o? results in
1 N
~ Z Ty — in —p)
2.20 Prove that the covariance estimate
. 1 X
Y= — — [ — )T
g 2 ) )
is an unbiased one, where
55
== L
N3
We have that
. 1 X . . T
B = g 2 B [((@e— ) — (b — ) (@ — ) — (i — )"
k=1
— Bl wle ]+ 3B - i ] -
N—-1.3 N k=1
1 N
N_lg;Ewa—uﬂu w)"|
S -
N_lg¥ﬂm—qu—uH (2.1)
However

Bl wi -] = B|x Y@ —wy > (@ -

= —NE=_% (2.2)


https://ebookyab.ir/solution-manual-pattern-recognition-theodoridis-koutroumbas/

RSURRARNE R BT M2 BHBRRAIGE 4868935 - (e AR Ide K NILAPRAR taa)

13

where independence among the samples has been assumed, i.e., F [(:1:Z —p)(x; — u)T] =
9;;2. Following a similar path we end up with

B~ w)p— )] = B [(a - wlas w7 = o5 (23)
Also
B (G (e — )] = 2 2.4)
Combining Eqs (2.1)-(2.4) we get

~ N 1 1 1
E[E]:N—12+N—12_N—1Z_N—1E:E

Hence the estimate is an unbiased one.

2.21 Prove that the ML estimates of the mean value and the covariance
matrix (Problem 2.19) can be computed recursively, i.e.,

1

N+ 1(33N+1 — fiy)

By = By +

and N N
~ o ~ ~ ~ T
NSy e e T A

where the subscript in the notation of the estimates, fuy, Sy indicates the
number of samples used for their computation.
From Problem 2.19 we know that

. 1 N+1 1 N 1
Pyvao = N7 2 Te= N1 kz::l Ty + N 1IN+
N 1 . 1

= N+1MN+N+1$N+1:MN+N+1

(TNt — fiy)

For the covariance matrix we get

1 N+1 .
YNt1 = N1l 2 (T — fyy)(Tr — i)
1 N+1 1 N+1

= Zwkwk — AN Zwk -
N+1 N+1 =


https://ebookyab.ir/solution-manual-pattern-recognition-theodoridis-koutroumbas/

