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Objectives Review Questions

Chapter 1

1.1 We use Eq. 1.1 to convert wavelength to frequency (taking advantage of the constant speed of light

c) and we use Eq. 1.2 to convert frequency to photon energy:

ν =
c

λ
=

2.998 · 108ms−1

1.0 · 10−3m
= 3.0 · 1011 s−1 by Eq. 1.1

Ephoton = hν = (6.626 · 10−34 J s)(3.0 · 1011 s−1) = 2.0 · 10−22 J. Eq. 1.2

1.2 The de Broglie wavelength (Eq. 1.3) is our measure of the degree of quantum character in our

system. We calculate λdB and compare it to the domain to determine if we need quantum mechanics to

describe the physics. In this case, to find the de Broglie wavelength we need to calculate the momentum

p from the kinetic energy, but we can do that:

K =
mv2

2
=

p2

2m

p =
√
2mK =

√

2(1.008 amu)(1.661 · 10−27 kg amu−1)(4.0 · 10−21 J) = 3.66 · 10−24 kgm s−1

λdB =
h

p
=

6.626 · 10−34 J s

3.66 · 10−24 kgm s−1
= 1.8 · 10−10m = 1.8 Å.

Because 1.8 · 10−10m ≪ 1.0µm = 1.0 · 10−6m, it is unlikely that quantum effects arising from this

motion will be significant.

1.3 The atom is in an n = 2 state, and we can use the Bohr model of the atom to calculate the correct

values of the energies. From Eq. 1.15 we can calculate the total energy, and from Eq. 3.7 we can

calculate the potential energy. The question does not specify units, and the most convenient units for

the total energy are Eh:

En = − Z2

2n2
Eh = − 22

2(22)
Eh = −0.5Eh.

The potential energy depends on the radius of the electron orbit in the Bohr model,

rn =
n2

Z
a0 =

22

2
a0 = 2a0,

which gives us

U = − Ze2

4πǫ0r
= − 2e2

(4πǫ0)(2a0)
= − e2

(4πǫ0)a0)
= −1.00Eh.
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Chapter Problems

Notes on Maple and Mathematica commands

Several solutions in this manual have added notes on how to set up expressions under the symbolic

mathematics programs Maple (Waterloo Maple, Inc.) and Mathematica (Wolfram Research) to assist

in solving the problem. Please note, however, that a symbolic math program is useful only after we

have overcome the conceptual challenges of the problem. Where these programs have their greatest

use is when we need to solve simultaneous or transcendental equations, or obtain numerical values or

algebraic expressions for integrals. We still have to know how to set up an integral, and we have to

decide where and how to apply approximations (which turns out to be more important than one might

think). Once we have taken these steps, the program may be able to take over.

Even then, however, the math in the majority of our problems is limited to relatively straightforward

algebraic manipulations, however complex the concepts may be. For most of the cases where the

Maple and Mathematica syntax is not shown, little would differ from the written mathematics already

appearing in the solution. This is largely the goal of symbolic math programs in the first place: to

accept input in the form that one would write the problem on paper.

The following problems in this volume give specific commands for use with Maple or Mathematica:

A.10 A.18 1.9 1.20 2.3 2.4 2.10 2.35

3.29 3.31 3.47 4.26 9.19

Chapter A

A.1 This problem uses a common manipulation, one of the features of logarithms that makes them so

useful:

pKa = − log10Ka = − log10 e−∆G/(RT )

= −
[

−∆G

RT

]

log10 e log xa = a log x

=
∆G

RT
(0.434).

This shows, if you don’t mind us getting ahead of ourselves a little, that the pKa is directly proportional

to the free energy of dissociation, ∆G, and inversely proportional to the temperature, T .

A.2 The idea here is that, even if we think at first we have no idea what the number ought to be, a

closer look at the available choices makes it clear that we can spot some potentially ridiculous answers:

a. 2 · 1010ms−1 is faster than the speed of light.
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b. 2 · 105ms−1 has no obvious objections.

c. 2m s−1 is the speed of a slow walk, and would imply, for example, that you could send an e-mail

message over a cable connection to a friend half a mile away, and then run the half-mile to arrive

and deliver the message in person before the e-mail finishes traveling through the wires.

When we have calculations that toss around factors of 10−34, for one example, this is a significant skill.

The correct answer is 2 · 105ms−1.

A.3 The volume is roughly 125 Å
3
, which we can show is not big enough to hold more than about 15

atoms. Chemical bonds, formed between overlapping atoms, are roughly 1 Å long, and so typical atomic

diameters are roughly 2 Å or more, and occupy a volume on the order of (2 Å)3 = 8 Å
3
. A volume of

125 Å
3
, therefore, cannot hold more than about 125/8 = 15.6 atoms. Among the choices, the only

reasonable value is 8.

A.4 a. Chemical bond lengths in molecules are always in the range 0.6–4.0 Å, or 0.6 · 10−10 to

4.0 · 10−10m. 25 · 10−8m is much too large for a bond length. no

b. Six carbon atoms have a mass of 6 ·12 = 72 amu. With the added mass of a few hydrogen atoms

at 1 amu each, 78 amu is a reasonable value. yes

A.5 a. The derivatives d[A] and dt have the same units as the parameters [A] and t, respectively.

Both sides of the equation should therefore have units of mol L−1 s−1. That means that k needs

to provide the units of s−1 and cancel one factor of concentration units on the righthand side. k

has units of L s−1 mol−1.

b. The argument of the exponential function must be unitless, so kB must cancel units of energy

(J) in the numerator and temperature (K) in the denominator. The correct units are JK−1.

c. The units all cancel, and Keq is unitless.

d. Squaring both sides of the equation, we can solve for k: µω2 = k. k must therefore have units

of kg s−2.

A.6 There are two factors on the lefthand side, (2x+1)2 and e−ax
2

. For the product to be zero, at least

one of these factors must be zero. If (2x + 1) = 0, then x = − 1
2 . If e−ax

2

= 0, then x→ ± ∞ .

All three are valid solutions.

A.7 In general, for any complex number (a+ ib), the complex conjugate is (a+ b)∗ = a− ib. We look

for the imaginary component and and invert its sign:

a. x− iy : a = x b = −y, x + iy.

b. ix2y2 : a = 0 b = x2y2, −ix2y2 .

c. xy(x+ iy + z) : a = x2y + xyz b = xy2, x2y + xyz − ixy2, xy(x− iy + z).

d. a = x/z b = y/z, (x − iy)/z .

e.

eix = 1 + ix− x2 − ix3 + x4 + ix5 − . . .
a = 1− x2 + x4 − . . .
b = x− x3 + x5 − . . .

a− ib = 1− ix− x2 + ix3 + x4 − ix5 − . . . = e−ix.
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f. 54.3: a = 54.3 b = 0, 54.3.

A.8 This problem tests a few algebraic operations involving vectors, particularly useful to know when

we look at angular momentum and (often related) magnetic field effects.

a. The length of a vector is calculated using the Pythagorean theorem: |~C| =
√
02 + 22 + 12 =√

5 .

b. We add vectors one coordinate at a time: ~A+ ~B = (1 + 1, 0 + 0, 0 + 1) = (2, 0, 1).

c. The dot product of two vectors multiplies the values for each coordinate of the two vectors and

sums the results: ~A · ~B = (1 · 1) + (0 · 0) + (0 · 1) = 1.

d. In the case of perpendicular vectors, this gives us zero: ~A · ~C = (1 · 0) + (0 · 2) + (0 · 1) = 0.

e. The cross product involves a little more work, and yields a new vector, perpendicular to the two

original vectors: ~A × ~B = (0 · 1− 0 · 0, 0 · 1− 1 · 1, 1 · 0− 0 · 1) = (0,−1, 0).

A.9 If we accept that the Taylor series expansion is exact if we take it to infinite order, then the Euler

formula can be proven by the expansions of ex (Eq. A.25), sinx (Eq. A.26), and cosx (Eq. A.27):

eix =

∞∑

n=0

1

n!
(ix)n

= 1 + ix− 1
2x

2 − i

6
x3 +

1

24
x4 +

i

120
x5 − . . .

= (1− 1
2x

2 +
1

24
x4 − . . .) + i(x− 1

6
x3 +

1

120
x5 − . . .)

= cosx+ i sinx .

This equation is of practical importance to us, and is famous among mathematicians for tying together

three fundamental mathematical values—π, i, and e—in one equation:

eiπ = 1.

A.10 • Maple: We can have Maple solve the equation

(

P − a
V 2
m

)

(Vm − b)
RT

= 1

directly using the solve command. After checking that all of the units are indeed consistent, enter

the Maple command

solve((1.000-(3.716/V 2̂))*(V-0.0408)/(0.083145*298.15)=1,V);

The resulting solution, 24.98, is in the same units as b, so our final value to three significant digits

is 25.0 L mol−1.

• Mathematica: In Mathematica we use the Solve command to find the value of a variable in an

algebraic equation:

Solve[(1.000 - (3.716/V 2̂))*(V - 0.0408)/(0.083145*298.15) == 1, V]

Note that we need to use a double equals sign in the command. This command gives 24.979,

which rounds to 25.0 L mol−1.
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• Successive approximation: There are several ways to solve this, corresponding to different

forms of the equation that leaves Vm on one side. One way to set up the equation quickly is to

recognize that (Vm− b) will vary rapidly compared to P − (a/V 2
m), so we can isolate Vm as follows:

(

P − a
V 2
m

)

(Vm − b)
RT

= 1
(

P − a

V 2
m

)

(Vm − b) = RT

Vm − b =
RT

(

P − a
V 2
m

)

Vm =
RT

(

P − a
V 2
m

) + b.

Substituting in the values for P , a, b, R, and T (making sure that the units are all compatible),

we can reduce the equation to the following:

Vm( Lmol−1) =
(0.083145)(298.15)

1− 3.716
V 2
m

+ 0.0408 =
24.790

1− 3.716
V 2
m

+ 0.0408.

Guessing an initial value of 1 Lmol−1 yields the following series of approximations:

Vm =
24.790

1 + 3.716
12

+ 0.0408 = −9.0864

Vm =
24.790

1 + 3.716
5.3302

+ 0.0408 = 25.999

Vm =
24.790

1 + 3.716
22.0992

+ 0.0408 = 24.967

Vm =
24.790

1 + 3.716
24.7962

+ 0.0408 = 24.979

Vm =
24.790

1 + 3.716
24.8342

+ 0.0408 = 24.979.

The series has converged to the three significant digits requested. The final value for Vm is

25.0 L mol−1.

A.11 Here we apply the rules of differentiation summarized in Table A.3.

a.

f(x) = (x+ 1)1/2

df

dx
= 1

2 (x+ 1)−1/2.

b.

f(x) = [x/(x+ 1)]1/2

df

dx
= 1

2

(
x

x+ 1

)−1/2 [
1

x+ 1

dx

dx
+ x

d

dx

(
1

x+ 1

)]

= 1
2

(
x

x+ 1

)−1/2 [
1

x+ 1
− x

(x+ 1)2

]

.
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c.

df

dx
= exp

[

x1/2
] d

dx

(

x1/2
)

= 1
2x

−1/2 exp
[

x1/2
]

.

d.

df

dx
= exp

[
cos x2

] d

dx
(cos x2)

= exp
[
cos x2

]
(− sin x2)

d

dx
(x2)

= −2x sin x2 exp
[
cos x2

]
.

A.12 This problem tests our ability to use a few of the analytic integration results given in Table A.5.

a.
∫∞
0 e−axdx = − 1

ae
−ax|∞0 = − 1

a (0− 1) =
1

a
.

b.
∫ 5

1
x2dx = 1

3x
3|51 = 1

3 (125− 1) =
124

3
.

c.
∫ 5

1
x−3/2dx = −2x−1/2|51 = −2( 1√

5
− 1).

d. r2
∫ 2π

0
dφ
∫ π

0
sin θdθ = r2 (φ)|2π0 (− cos θ)|π0 = r2(2π − 0)[−(−1)− (−1)] = 4πr2.

A.13 We use the Coulomb force law, Eq. A.41, using the charge of the electron −e for both charges

and r12 set to 1.00 Å:

FCoulomb =
e2

4πǫ0r2

=
(1.602 · 10−19C)2

(1.113 · 10−10C2 J−1m−1)(1.00 Å)2(10−10mÅ
−1

)2
= 2.31 · 10−8N .

A.14 This problem relies on the definitions of the linear momentum p and the kinetic energy K (Eq.

A.36):

p = mv

K = 1
2mv

2 = p2

2m
.

A.15 We’re calling the altitude r. Because the acceleration is downward but r increases in the upward

direction, the acceleration is negative: −9.80ms−2. We invoke the relationship between force and the

potential energy, and find that we have to solve an integral:

U(r) = −
∫ r

0

F (r′) dr′ = −
∫ r

0

(−mg) dr′ = mgr.
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A.16

|FCoulomb| =
e2

4πǫ0r2
=

(1.602 · 10−19C)2

(1.113 · 10−10C2 J−1 m−1)(0.529 Å)2(10−10 mÅ
−1

)2

= 8.23 · 10−8N

|Fgravity| = mHg

= (1.008 amu)(1.661 · 10−27 kg amu−1)
(
9.80ms2

)

= 1.64 · 10−26N.

Sure enough, the gravitational force is smaller than the Coulomb force by orders of magnitude, and

the motions of these particles will be dictated—as well as we can measure them—exclusively by the

Coulomb force.

A.17 We are proving an equation that depends on L and x and t and vx, which may look like too many

variables. If we use the definition of L to put this equation in terms of K and U , then we can at least

put K in terms of speed. Then, because speed itself is a function of position and time, the number of

variables is quite manageable. Nonetheless, keeping things in terms of K and U is useful, because of

their straightforward dependence on only v and x, respectively.

To prove the equation, we could try working from both sides and seeing if the results meet in the

middle. First the lefthand side:

∂L

∂x
=
∂K

∂x
︸︷︷︸

=0

−∂U
∂x

K not a function of x

= Fx = ma Fx = −dU/dx

= m
d2x

dt2
acceleration = d2x/dt2

Next the righthand side:

d

dt

∂L

∂vx
=

d

dt

[
1

2
m
∂v2x
∂vx
− ∂U

∂vx

]

=
d

dt






mvx −

∂U

∂vx
︸︷︷︸

=0







U not a function of vx

= m
dvx
dt

= m
d2x

dt2
.

And there we are. One of the useful features of the Lagrangian is that the equation proved here can be

made to hold for different choices of coordinates. This enables the mechanics problems to be written in

coordinates that take advantage of symmetry (for example, if the only force is a radial one, attracting

or repelling particles from a single point), and the Lagrangian then provides a starting point to develop

relationships between the positions and velocities of the particles.

A.18 The overall energy before the collision is the sum of the two kinetic energies:

K = 1
2m1v

2
1 +

1
2m2v

2
2 ,
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and this must equal the energy after the collision:

K = 1
2m1v

′
1
2
+ 1

2m2v
′
2
2
.

Similarly, we may set the expressions for the linear momentum before and after the collision equal to

each other:

p = m1v1 +m2v2 = m1v
′
1 +m2v

′
2.

So there are two equations and two unknowns. At this point, the problem is ready to solve with a

symbolic math program.

Maple. The problem can be solved in a single step by asking Maple to solve the conservation of

energy and conservation of momentum equations simultaneously to get the final speeds (here vf [1] and

vf [2] in terms of the masses and initial speeds:

solve({m[1]*v[1]+m[2]*v[2] = m[1]*vf[1]+m[2]*vf[2], (1/2) * m[1] * v[1]̂ 2+(1/2) * m[2] *

v[2]̂ 2 = (1/2) * m[1] * vf[1]̂ 2+(1/2) * m[2]*vf[2]̂ 2}, [vf[1], vf[2]]);

Mathematica. We are looking for an algebraic expression, rather than a numerical value, in the

solution to this problem. We can use the Solve command for either case:

Solve[m1*v1 + m2*v2 == m1*vf1 + m2*vf2 && (1/2)*m1*v1̂ 2 + (1/2)*m2*v2̂ 2 ==

(1/2)*m1*vf1̂ 2 + (1/2)*m2*vf2̂ 2, vf1, vf2]

On paper. This last equation lets us eliminate one variable by writing, for example, the final speed

v′2 in terms of v′1:

v′2 =
m1v1 +m2v2 −m1v

′
1

m2
.

Now we can put this value into the equation for K, and solve for v′1:

K = 1
2m1v

2
1 +

1
2m2v

2
2 (a)

= 1
2m1v

′
1
2
+ 1

2m2v
′
2
2

= 1
2m1v

′
1
2
+ 1

2m2

(
m1v1 +m2v2 −m1v

′
1

m2

)2

.

This is going to be an equation that depends on v′1
2
and v′1, so we can solve it using the quadratic

formula. In that case, it’s easiest to put all the quantities on one side of the equation:

0 = 1
2m1v

′
1
2
+ 1

2m2

(
m1v1 +m2v2 −m1v

′
1

m2

)2

−
(
1
2m1v

2
1 +

1
2m2v

2
2

)
subtract (a) above

= 1
2m1v

′
1
2
+ 1

2m2









m2
1v

2
1 +m2

2v
2
2 +m2

1v
′
1
2

+2m1m2v1v2 − 2m2
1v1v

′
1 − 2m1m2v

′
1v2

m2
2









expand the square

− 1
2m1v

2
1 − 1

2m2v
2
2

= m1v
′
1
2
+
m2

1

m2
v21 +m2v

2
2 +

m2
1

m2
v′1

2
+ 2m1v1v2 divide by 1/2

− 2
m2

1

m2
v1v

′
1 − 2m1v

′
1v2 −m1v

2
1 −m2v

2
2

= v′1
2
(

m1 +
m2

1

m2

)

+ v′1

(

−2m
2
1

m2
v1 − 2m1v2

)

group by power of v′1
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+

(
m2

1

m2
v21 +m2v

2
2 + 2m1v1v2 −m1v

2
1 −m2v

2
2

)

= v′1
2
(

m1 +
m2

1

m2

)

+ v′1

(

−2m
2
1

m2
v1 − 2m1v2

)

+

[(
m2

1

m2
−m1

)

v21 + 2m1v1v2

]

v′1 =

(

2m1 + 2
m2

1

m2

)−1{(

2
m2

1

m2
v1 + 2m1v2

)

quadratic formula

±
[(

2
m2

1

m2
v1 + 2m1v2

)2

− 4

(

m1 +
m2

1

m2

)[(
m2

1

m2
−m1

)

v21 + 2m1v1v2

]]1/2





.

To deal with this equation, we can expand the multiplication inside the square brackets:

(

2
m2

1

m2
v1 + 2m1v2

)2

= 4
m4

1

m2
2

v21 + 8
m3

1

m2
v1v2 + 4m2

1v
2
2

−4
(

m1 +
m2

1

m2

)[(
m2

1

m2
−m1

)

v21 + 2m1v1v2

]

= −4m
3
1

m2
v21 − 4

m4
1

m2
2

v21 + 4m2
1v

2
1 + 4

m3
1

m2
v21

− 8m2
1v1v2 − 8

m3
1

m2
v1v2.

Nearly all of these terms cancel when we add these two expressions together, leaving:

4m2
1v

2
2 + 4m2

1v
2
1 − 8m2

1v1v2.

In the quadratic equation, we have to take the square root of this, but that turns out to be easy:

[
4m2

1v
2
2 + 4m2

1v
2
1 − 8m2

1v1v2
]1/2

= 2m1

[
v22 + v21 − 2v1v2

]1/2

= 2m1 (v2 − v1) .

Finally, putting this back into our equation for v′1, we get

v′1 =

(

2m1 + 2
m2

1

m2

)−1{(

2
m2

1

m2
v1 + 2m1v2

)

± 2m1 (v2 − v1)
}

=

(

1 +
m1

m2

)−1{(
m1

m2
v1 + v2

)

± (v2 − v1)
}

. divide out 2m1

This is correct as far as it goes, but we have two solutions, corresponding to either the + or − sign. If

we use the − sign, then we get

v′1 =

(

1 +
m1

m2

)−1{
m1

m2
v1 + v2 − v2 + v1

}

= v1.

This is the solution if the collision doesn’t occur; particle 1 just keeps moving at the same speed as
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before. The + sign gives us the correct solution:

v′1 =

(

1 +
m1

m2

)−1{
m1

m2
v1 + v2 + v2 − v1

}

=

(

1 +
m1

m2

)−1 [(
m1

m2
− 1

)

v1 + 2v2

]

=
1

m1 +m2
[(m1 −m2) v1 + 2m2v2] .

We can now use the conservation of momentum to solve for v′2. I’m going to factor out a 1/(m1 +m2)

to get an equation similar to the one for v′1:

v′2 =
m1v1 +m2v2 −m1v

′
1

m2

=
1

m2

{

m1v1 +m2v2 −
m1

m1 +m2
[(m1 −m2) v1 + 2m2v2]

}

=

(
m1

m2

)

v1 + v2 −
(
m1 −m2

m1 +m2

)(
m1

m2

)

v1 − 2

(
m1

m1 +m2

)

v2

=

(
1

m1 +m2

)[
m1(m1 +m2)

m2
v1 + (m1 +m2)v2 −

(
m1(m1 −m2)

m2

)

v1 − 2m1v2

]

=
1

m1 +m2
[(m2 −m1) v2 + 2m1v1] .

Because there is nothing in the problem that determines which particle is labeled 1 and which is labeled

2, the equations for v′1 and v′2 must be exactly the same, with all the labels 1 and 2 switched.

If you haven’t seen this result or simply don’t remember it, it’s worthwhile to check a few values. For

example, if the two particles have equal mass (m1 = m2), then the final speeds are v′1 = v2 and v′2 = v1;

i.e., the particles simply exchange speeds. Another example: if particle 1 is initially at rest (v1 = 0),

then it picks up a speed 2m2v2/(m1 +m2) from the collision. In that case, if particle 2 dominates the

mass (m2 ≫ m1), then particle 1 will find itself with a final speed equal to 2v2. In contrast, if particle 1

is much more massive than 2, then the collision will hardly affect it (v′1 ≈ 0) and particle 2 will simply

reverse direction (v′1 ≈ −v2).
Note that the two particles don’t have to be moving in opposite directions. If particle 1 is behind 2

but moving faster and in the same direction, then they will strike each other, and particle 2 will acquire

particle 1’s higher speed.

A.19

K = U = − e2

4πǫ0r
=

(1.602 · 10−19C)2

(1.113 · 10−10C2 J−1m−1)(1.0 Å)(10−10mÅ
−1

)
= 2.31 · 10−18 J

L = |~r × ~p| = rp, since ~r ⊥ ~p.

p =
√

2meK =
[
2(9.109 · 10−31 kg) · (2.31 · 10−18 J)

]1/2
= 2.05 · 10−24 kgm s−1

L = (1.0 Å)(10−10mÅ
−1

)(2.05 · 10−24 kgm s−1) = 2.05 · 10−34 kgm2 s−1 .

A.20 a. Find the center of mass positions ~r
(0)
i at collision. Let’s call the center of mass of the

entire system the origin. The particles have equal mass, so the origin will always lie exactly in
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between the two particles. At the time of the collision, we may draw a right triangle for each

particle, connecting the particle’s center of mass, the origin, and with the right angle resting on

the z axis. The hypotenuse of the triangle connects the center of mass to the point of contact

between the two particles, and must be of length d/2 (the radius of the particle). The other two

sides are of length (d/2) cos θ (along the z axis) and (d/2) sin θ (along the x axis), based on the

definitions of the sine and cosine functions in Eqs. A.5. These correspond to the magnitudes of

the z and x coordinates, respectively, of the particle centers of mass at the collision. The signs of

the values may be determined by inspection of the figure: at the time of the collision, x1 and z2
are positive while x2 and z1 are negative, so the position vectors are:

~r
(0)
1 = ((d/2) sin θ, 0,−(d/2) cos θ)
~r
(0)
2 = (−(d/2) sin θ, 0, (d/2) cos θ) .

b. Find the velocities ~v′i after collision. Simple collisions obey a simple reflection law: the angle

of incidence is equal to the angle of reflection. These are the angles between the velocity vectors

and the normal vector—the line at angle θ from the z axis. (This is the normal vector because

it lies perpendicular to the plane that lies between the two spheres at the point of collision; this

plane is effectively the surface of reflection for the collision.) Therefore, the velocity vector after

the collision is at an angle 2θ from the z axis, and the velocity vectors after the collision are

~v′1 = v0(sin 2θ, 0,− cos2θ)

~v′2 = v0(− sin 2θ, 0, cos 2θ).

Notice that the speed after the collision is still v0 for each particle. Because they each began with

the same magnitude of linear momentum, the momentum transfer that takes place only affects

the trajectories.

c. Show that ~L is conserved before and after the collision. We now have position and velocity

vectors before and after the collision:

~r1 = ((d/2) sin θ, 0,−(d/2) cos θ) + ~v1t ~r2 = (−(d/2) sin θ, 0, (d/2) cos θ) + ~v1t

~v′′1 = v0(0, 0, 1) ~v′′2 = v0(0, 0,−1)
~v′1 = v0(sin 2θ, 0,− cos2θ) ~v′2 = v0(− sin 2θ, 0, cos 2θ).

We take the cross products of these for each particle to get ~L for each particle, and we add these

together to get the total angular momentum for the system. Before the collision,

~r′′1 = ((d/2) sin θ, 0,−(d/2) cos θ) + v0t(0, 0, 1)

~L′′
1 = m~r′′1 × ~v′′1
= m

(
y′′1v

′′
z1 − z′′1 vy1, z′′1 v′′x1 − x′′1vz1, x′′1v′′y1 − y′′1 vx1

)

= m (0,−(dv0/2) sin θ, 0)

and similarly for ~L′′
2 :

~L′′
2 = m (0,−(dv0/2) sin θ, 0)

and combining these yields:

~L′′ = ~L′′
1 + ~L′′

2 = −mdv0 (0, sin θ, 0).
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All of the position or velocity vectors have only zero y components, and therefore only the y

component of the cross product survives. After the collision,

~r′1 = ((d/2) sin θ, 0,−(d/2) cos θ) + v0t(sin 2θ, 0,− cos2θ)

~L′
1 = m~r′1 × ~v′1

which has a y component

~L′
y1 = m {−(d/2) cos θ sin 2θ − v0t cos 2θ sin 2θ − [(d/2) sin θ(− cos 2θ) + v0t sin 2θ(− cos 2θ)]}

and similarly for ~L′
y2:

~L′
y1 = m {(d/2) cos θ(− sin 2θ) + v0t cos 2θ(− sin 2θ)− [−(d/2) sin θ cos 2θ − (−v0t sin 2θ) cos 2θ]} .

Adding the two components together we find that all the t-dependent terms cancel, and trigono-

metric identities from Table A.2 simplify the rest:

~L′
y = ~L′

1y + ~L′
2y

=
mdv0
2

[−2 cos θ sin 2θ + 2 sin θ cos 2θ]

sin 2θ = 2 sin θ cos θ

cos 2θ = 2 cos2 θ − 1

~L′
y =

2mdv0
2

[
− cos θ (2 sin θ cos θ) + sin θ

(
2 cos2 θ − 1

)]

= mdv0
[
−2 cos2 θ sin θ + 2 cos2 θ sin θ − sin θ

]

= −mdv0 sin θ.

This is the y component of ~L′, and the x and z components are again zero in the cross products,

so we have shown that both ~L′ and ~L′′ are equal to

~L = mdv0 (0, sin θ, 0).

If the particles hit head-on, then θ = 0 and the angular momentum is zero. As θ increases, L

increases to a maximum value of mdv0 when the two particles just barely touch each other in passing.

If we had used the conservation of L at the outset, we could have found this solution quickly. Because

the angular momentum does not depend on the size of the particles, we can replace our two objects

here with point masses. It won’t matter that they now won’t collide, because if L is conserved we have

to get the same answer before the collision takes place anyway. In fact, because L is conserved, we

can pick any point in time that’s convenient for us to calculate L, so I would pick the time when the

two particles reach z = 0. At this time, both particles are traveling on trajectories that are exactly

perpendicular to their position vectors (~vi is perpendicular to ~ri). This makes the cross product for

each particle easy to evaluate:

~Li = m~ri × ~vi = m(±(d/2) sin θ, 0, 0)× (0, 0,±v0) = mdv0/2(0, sin θ, 0),

where the minus sign applies to particle 2. There are two particles, so we multiply this vector by 2,

arriving at the same ~L as above.

A.21 a. Write ~E1 in vector form. The magnitude of the electric field generated by particle 1 is

given by F = q2E1, and this force must be equal to the Coulomb force F = −q1q2/(4πǫ0r2). The
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force vector points along the axis separating the two particles, and we can include this direction-

dependence by multiplying the magnitude of the vector by ~r/r. The Cartesian form of the vector

~r from particle 1 to 2, just working off part (b) of the figure, may be written (rv1/c, y2, 0) and

has length

r =

[(rv1
c

)2

+ y22

]1/2

.

Therefore, the force vector is

~F =

(
q1q2

4πǫ0r2

)
~r

r
=

q1q2
4πǫ0r3

(rv1/c, y2, 0)

and the electric field vector is

~E1 =
~F

q2
=

q1
4πǫ0r3

(rv1/c, y2, 0).

b. Write ~B in vector form. Here we just have to be careful to correctly evaluate the cross product.

We are using the equation ~B = 1
c2
~E1 × ~v1, and we have an equation for ~E2 already. The velocity

vector consists only of an x-velocity component: ~v1 = (v1, 0, 0). Notice that because these two

vectors lie in the xy plane, their cross product—which is perpendicular to both vectors—will lie

along the z axis. The z component of the cross product ~a×~b is equal to axby − aybx, so we have

~B =
1

c2
~E1 × ~v1 =

q1
4πǫ0c2r3

(0, 0, v1y2) .

c. Find the magnetic force vector. Again, we take a cross product with the velocity. This time,

the ~B vector lies along z, and ~v1 lies along x, so the cross product lies along y:

~Fmag = q2~v1 × ~B =
q1q2

4πǫ0c2r3
(0, v21y2, 0) .

d. Calculate the difference between the actual and classical values of the Coulomb force. To compute

the actual Coulomb force, we use the distance r, so ~F has a magnitude

F =
q1q2

4πǫ0r2
.

The classical Coulomb force would be

F ′ =
q1q2

4πǫ0y22
,

and the difference between the two forces is

F − F ′ =
q1q2
4πǫ0

[
1

r2
− 1

y22

]

.

We can simplify this by relating r2 and y2:

r2 =
(rv1
c

)2

+ y22

r2 = y22

[

1−
(v1
c

)2
]−1

.
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So, finally, we have

F − F ′ =
q1q2
4πǫ0

[
1

y2

[

1−
(v1
c

)2
]

− 1

y22

]

=
q1q2

4πǫ0y22

[

−
(v1
c

)2
]

= − q1q2v
2
1

4πǫ0c2y22
.

In comparison, the magnitude of the magnetic force we calculated from the standard equations is

Fmag = q1q2v
2
1y2/(4πǫ0c

2r3),

and for v ≪ c, we can allow r ≈ y2, so that

Fmag = q1q2v
2
1/(4πǫ0c

2y22).

Magnetic forces are a natural result of the motion of electrical charge when special relativity is

taken into account. It was this relationship between electric and magnetic forces that was the basis of

Einstein’s original paper on special relativity.
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