
2 Linear Algebra

Exercises

2.1 (a) The 2×2 and 3×3 discrete derivative matrices can actually be read off from
the general form provided there:

D2×2 =

(
0 1

2∆x
− 1

2∆x 0

)
, (2.1)

D3×3 =

 0 1
2∆x 0

− 1
2∆x 0 1

2∆x
0 − 1

2∆x 0

 . (2.2)

(b) To calculate the eigenvalues, we construct the characteristic equation where

det(D2×2 −λ I) = 0 = λ 2 +
1

4∆x2 . (2.3)

Then, the eigenvalues of the 2×2 derivative matrix are

λ =± i
2∆x

. (2.4)

For the 3×3 derivative matrix, its characteristic equation is

det(D3×3 −λ I) = 0 = det

 −λ 1
2∆x 0

− 1
2∆x −λ 1

2∆x
0 − 1

2∆x −λ

 (2.5)

= (−λ )
(

λ 2 +
1

4∆x2

)
− λ

4∆x2 .

One eigenvalue is clearly 0, and the other eigenvalues satisfy

λ 2 +
1

2∆x2 = 0 , (2.6)

and so the 3×3 derivative matrix has eigenvalues

λ = 0,± i√
2∆x

. (2.7)

All non-zero eigenvalues are exclusively imaginary numbers.
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2 2 Linear Algebra

(c) For the 2×2 derivative matrix, the eigenvector equation can be expressed as(
0 1

2∆x
− 1

2∆x 0

)(
a
b

)
=± i

2∆x

(
a
b

)
, (2.8)

for some numbers a,b. This linear equation requires that

b =±ia , (2.9)

and so the eigenvectors can be expressed as

v⃗1 = a
(

1
i

)
, v⃗2 = a

(
1
−i

)
. (2.10)

To ensure that they are unit normalized, we require that

v⃗∗1 · v⃗1 = a2 (1 − i)
(

1
i

)
= 2a2 , (2.11)

or that a = 1/
√

2 (ignoring a possible overall complex phase). Thus, the
normalized eigenvectors are

v⃗1 =
1√
2

(
1
i

)
, v⃗2 =

1√
2

(
1
−i

)
. (2.12)

Note that these are mutually orthogonal:

v⃗∗1 · v⃗2 =
1
2
(1 − i)

(
1
−i

)
= 1−1 = 0 . (2.13)

For the 3 × 3 derivative matrix, we will first determine the eigenvector
corresponding to 0 eigenvalue, where 0 1

2∆x 0
− 1

2∆x 0 1
2∆x

0 − 1
2∆x 0

 a
b
c

=

 0
0
0

 . (2.14)

Performing the matrix multiplication, we find that b
c−a
−b

=

 0
0
0

 . (2.15)

This then enforces that b = 0 and c = a. That is, the normalized eigenvector
with 0 eigenvalue is (again, up to an overall complex phase)

v⃗1 =
1√
2

 1
0
1

 . (2.16)

Next, the eigenvectors for the non-zero eigenvalues satisfy 0 1
2∆x 0

− 1
2∆x 0 1

2∆x
0 − 1

2∆x 0

 a
b
c

=± i√
2∆x

 a
b
c

 . (2.17)
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Performing the matrix multiplication, we find

1
2∆x

 b
c−a
−b

=± i√
2∆x

 a
b
c

 , (2.18)

or that

b =±
√

2ia , c =± i√
2

b =−a . (2.19)

Then, the other two eigenvectors are

v⃗2 = a

 1√
2i

−1

 , v⃗3 = a

 1
−
√

2i
−1

 . (2.20)

The value of a can be determined by demanding that they are normalized:

v⃗∗2 · v⃗2 = a2
(

1 −
√

2i −1
) 1√

2i
−1

= 4a2 , (2.21)

or that a = 1/2. That is,

v⃗2 =
1
2

 1√
2i

−1

 , v⃗3 =
1
2

 1
−
√

2i
−1

 . (2.22)

All three eigenvectors, v⃗1, v⃗2, v⃗3, are mutually orthogonal. For example,

v⃗∗2 · v⃗3 =
1
4

(
1 −

√
2i −1

) 1
−
√

2i
−1

=
1−2+1

4
= 0 . (2.23)

(d) To determine how the exponentiated matrix

M= e∆xD =
∞

∑
n=0

∆xn

n!
Dn , (2.24)

acts on an eigenvector v⃗ with eigenvalue λ , let’s use the Taylor expanded
form. Note that

Dn⃗v = λ n⃗v , (2.25)

and so

Mv⃗ =
∞

∑
n=0

∆xn

n!
Dn⃗v =

∞

∑
n=0

(λ ∆x)n

n!
v⃗ = eλ∆x⃗v . (2.26)

We can then just plug in the appropriate eigenvalues and eigenvectors.
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(e) Now, we are asked to determine the matrix form of the exponentiated 2×2
and 3×3 derivative matrices. Let’s start with the 2×2 matrix and note that
we can write

M2×2 = e∆xD2×2 =
∞

∑
n=0

∆xn

n!

(
0 1

2∆x
− 1

2∆x 0

)n

=
∞

∑
n=0

1
2nn!

(
0 1
−1 0

)n

.

(2.27)

So, the problem is reduced to establishing properties of the matrix(
0 1
−1 0

)
. Note that the first few powers of the matrix are:

(
0 1
−1 0

)0

=

(
1 0
0 1

)
= I , (2.28)(

0 1
−1 0

)1

=

(
0 1
−1 0

)
, (2.29)(

0 1
−1 0

)2

=

(
0 1
−1 0

)(
0 1
−1 0

)
=−

(
1 0
0 1

)
=−I . (2.30)

This pattern continues, and it can be compactly expressed as(
0 1
−1 0

)2n

= i2nI ,
(

0 1
−1 0

)2n+1

= (−i)i2n+1
(

0 1
−1 0

)
, (2.31)

for n = 0,1,2, . . . . Then, the 2×2 exponentiated matrix can be expressed as

M2×2 = I
∞

∑
n=0

i2n

22n(2n)!
+

(
0 1
−1 0

) ∞

∑
n=0

i2n

22n+1(2n+1)!
(2.32)

= cos
1
2
I+ sin

1
2

(
0 1
−1 0

)
=

(
cos 1

2 sin 1
2

−sin 1
2 cos 1

2

)
.

A similar exercise can be repeated for the 3× 3 derivative matrix. We want
to evaluate the sum

M3×3 = e∆xD3×3 =
∞

∑
n=0

∆xn

n!

 0 1
2∆x 0

− 1
2∆x 0 1

2∆x
0 − 1

2∆x 0

n

(2.33)

=
∞

∑
n=0

1
2nn!

 0 1 0
−1 0 1
0 −1 0

n

.

Now, note that even powers of the matrix take the form 0 1 0
−1 0 1
0 −1 0

0

= I , (2.34)
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 0 1 0
−1 0 1
0 −1 0

2

=

 1 0 1
0 0 0
1 0 1

−2I , (2.35)

 0 1 0
−1 0 1
0 −1 0

4

= 2

 1 0 1
0 0 0
1 0 1

+4I , (2.36)

and so the general result takes the form 0 1 0
−1 0 1
0 −1 0

2n

= (−2)n−1

 1 0 1
0 0 0
1 0 1

+(−2)nI , (2.37)

for n = 1,2, . . . . Products of odd powers of the matrix take the form 0 1 0
−1 0 1
0 −1 0

1

=

 0 1 0
−1 0 1
0 −1 0

 , (2.38)

 0 1 0
−1 0 1
0 −1 0

3

=−2

 0 1 0
−1 0 1
0 −1 0

 , (2.39)

 0 1 0
−1 0 1
0 −1 0

5

= 4

 0 1 0
−1 0 1
0 −1 0

 . (2.40)

The general form is then 0 1 0
−1 0 1
0 −1 0

2n+1

= (−2)n

 0 1 0
−1 0 1
0 −1 0

 , (2.41)

for n = 0,1,2, . . . . Putting these results together, the 3 × 3 exponentiated
matrix is

M3×3 = I+
∞

∑
n=1

(−2)n

22n(2n)!

−1
2

 1 0 1
0 0 0
1 0 1

+ I

 (2.42)

+
∞

∑
n=0

(−2)n

22n+1(2n+1)!

 0 1 0
−1 0 1
0 −1 0


=

1
2

 1 0 1
0 0 0
1 0 1

+
1
2

 1 0 −1
0 2 0
−1 0 1

 ∞

∑
n=0

(−1)n

√
2

2n
(2n)!

+
1√
2

 0 1 0
−1 0 1
0 −1 0

 ∞

∑
n=0

(−1)n

√
2

2n+1
(2n+1)!
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=
1
2

 1 0 1
0 0 0
1 0 1

+
cos 1√

2

2

 1 0 −1
0 2 0
−1 0 1

+
sin 1√

2√
2

 0 1 0
−1 0 1
0 −1 0

 .

2.2 If we instead defined the derivative matrix through the standard asymmetric
difference, the derivative matrix would take the form

D=



. . .
...

...
... · · ·

· · · − 1
∆x

1
∆x 0 · · ·

· · · 0 − 1
∆x

1
∆x · · ·

· · · 0 0 − 1
∆x · · ·

...
...

...
...

. . .

 . (2.43)

Such a matrix has no non-zero entries below the diagonal and so its characteristic
equation is rather trivial, for any number of grid points. Note that

det(Dn×n −λ I) = det



. . .
...

...
... · · ·

· · · − 1
∆x −λ 1

∆x 0 · · ·
· · · 0 − 1

∆x −λ 1
∆x · · ·

· · · 0 0 − 1
∆x −λ · · ·

...
...

...
...

. . .


= 0 =

(
− 1

∆x
−λ

)n

. (2.44)

Thus, there is but a single eigenvalue, λ =−1/∆x.
2.3 (a) We are asked to express the quadratic polynomial p(x) as a linear combina-

tion of Legendre polynomials. So, we have

p(x) = ax2 +bx+ c = d0P0(x)+d1P1(x)+d2P2(x) (2.45)

= d0
1√
2
+d1

√
3
2

x+d2

(√
5
8
(3x2 −1)

)
,

for some coefficients d0,d1,d2. First, matching the coefficient of x2, we must
have

3

√
5
8

d2 = a , (2.46)

or that

d2 =
1
3

√
8
5

a . (2.47)

Next, matching coefficients of x, we have

d1

√
3
2
= b , (2.48)
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or that

d1 =

√
2
3

b . (2.49)

Finally, matching coefficients of x0, we have

d0
1√
2
−d2

√
5
8
= d0

1√
2
− a

3
= c , (2.50)

or that

d0 =
√

2c+

√
2

3
a . (2.51)

Then, we can express the polynomial as the linear combination

p(x) =

(
√

2c+

√
2

3
a

)
P0(x)+

√
2
3

bP1(x)+
1
3

√
8
5

aP2(x) , (2.52)

or as the vector in the space of Legendre polnomials

p(x) =


√

2c+
√

2
3 a√

2
3 b

1
3

√
8
5 a

 . (2.53)

(b) Let’s now act on this vector with the derivative matrix we constructed:

d
dx

p(x) =

 0
√

3 0
0 0

√
15

0 0 0




√
2c+

√
2

3 a√
2
3 b

1
3

√
8
5 a

=


√

2b√
8
3 a

0

 . (2.54)

Then, re-interpreting this as a polynomial, we have that

d
dx

p(x) =
√

2bP0(x)+

√
8
3

aP1(x) = b+2ax , (2.55)

which is indeed the derivative of p(x) = ax2 +bx+ c.
(c) Let’s first construct the second derivative matrix through squaring the first

derivative matrix:

d2

dx2 =
d
dx

d
dx

=

 0
√

3 0
0 0

√
15

0 0 0

 0
√

3 0
0 0

√
15

0 0 0

=

 0 0 3
√

5
0 0 0
0 0 0

 .

(2.56)

By contrast, the explicit matrix element in the i j position would be(
d2

dx2

)
i j
=
∫ 1

−1
dxPi−1(x)

d2

dx2 Pj−1(x) . (2.57)
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For the second derivative to be non-zero, it must act on P2(x), and so j = 3.
Further, by orthogonality of the Legendre polynomials, the only non-zero
value is i = 1. Then, the one non-zero element in the matrix is(

d2

dx2

)
13

=
∫ 1

−1
dxP0(x)

d2

dx2 P2(x) =
1√
2

∫ 1

−1
dx3

√
5
2
= 3

√
5 , (2.58)

which agrees exactly with just squaring the derivative matrix.
(d) To calculate the exponential of the derivative matrix, we need all of its pow-

ers. We have already calculated the first and second derivative matrices, but
what about higher powers? With only the first three Legendre polynomials,
it is easy to see that the third and higher derivative matrices are all 0:

d3

dx3 =
d
dx

d2

dx2 =

 0
√

3 0
0 0

√
15

0 0 0

 0 0 3
√

5
0 0 0
0 0 0

=

 0 0 0
0 0 0
0 0 0

 .

(2.59)

Thus, the Taylor expansion of the exponentiated derivative matrix termi-
nates after a few terms:

M= e∆x d
dx = I+∆x

 0
√

3 0
0 0

√
15

0 0 0

+
∆x2

2

 0 0 3
√

5
0 0 0
0 0 0

 . (2.60)

The action of this matrix on the polynomial as expressed as a vector in
Legendre polynomial space is

M


√

2c+
√

2
3 a√

2
3 b

1
3

√
8
5 a

=


√

2c+
√

2
3 a√

2
3 b

1
3

√
8
5 a

+∆x


√

2b√
8
3 a

0

+∆x2


√

8a
0
0


= ax2 +bx+ c+(b+2a)∆x+2a∆x2 (2.61)

= a(x+∆x)2 +b(x+∆x)+ c ,

which is indeed a translation of the polynomial, as expected.
2.4 (a) To determine if integration is linear, we need to verify the two properties.

First, for two functions f (x) and g(x), anti-differentiation acts on their sum
as: ∫

dx ( f (x)+g(x)) = F(x)+G(x)+ c , (2.62)

where we have
d
dx

F(x) = f (x) ,
d
dx

G(x) = g(x) , (2.63)

and c is an arbitrary constant. Linearity requires that this equal the sum of
their anti-derivatives:∫

dx f (x)+
∫

dxg(x) = F(x)+G(x)+2c . (2.64)
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Note that each integral picks up a constant c. So, the only way that anti-
differentiation can be linear is if the integration constant c = 0. Note also
that integration, i.e., the area under a curve, is independent of the integration
constant.
Next, we must also demand that multiplication by a constant is simple for
linearity. That is, for some constant c, we must have that∫

dxc f (x) = cF(x) , (2.65)

which is indeed true by the Leibniz product rule.
(b) For two vectors f⃗ , g⃗ related by the action of the differentiation matrix,

D f⃗ = g⃗ , (2.66)

we would like to define the anti-differentiation operator A as

f⃗ = D−1g⃗ = Ag⃗ . (2.67)

However, this clearly is only well-defined if the derivative operator is inverti-
ble; or, that it has no 0 eigenvalues. For the 3×3 derivative matrix, we found
that it had a 0 eigenvalue, and this property holds for higher dimensional
differentiation matrices. Thus, some other restrictions must be imposed for
anti-differentiation to be well-defined as a matrix operator.

2.5 (a) As a differential equation, the eigenvalue equation for the operator Ŝ is

−ix
d
dx

fλ (x) = λ fλ (x) , (2.68)

for some eigenvalue λ and eigenfunction fλ . This can be rearranged into

d fλ
fλ

= iλ
dx
x
, (2.69)

and has a solution

fλ (x) = cxiλ = ceiλ logx , (2.70)

for some constant c. Note that the logarithm only makes sense if x ≥ 0, so
we restrict the domain of the operator Ŝ to x ∈ [0,∞). (This can be relaxed,
but you have to define what you mean by logarithm of a negative number
carefully.) For the eigenfunctions to be bounded, we must require that λ is
real-valued.

(b) Integration of the product of two eigenfunctions with eigenvalues λ1 ̸= λ2

yields∫ ∞

0
dx fλ1(x)

∗ fλ2(x) =
∫ ∞

0
dxx−i(λ1−λ2) =

∫ ∞

0
dxe−i(λ1−λ2) logx , (2.71)

where we restrict to the domain x ∈ [0,∞), as mentioned above. Now, let’s
change variables to y= logx, and now y∈ (−∞,∞), and the integral becomes∫ ∞

0
dxe−i(λ1−λ2) logx =

∫ ∞

−∞
dyey e−i(λ1−λ2)y . (2.72)
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Note the extra factor ey in the integrand; this is the Jacobian of the change
of variables x = ey, and so dx = ey dy. If this Jacobian were not there, then
the integral would be exactly like we are familiar with from Fourier trans-
forms. However, with it there, this integral is not defined. We will fix it in
later chapters.

(c) A function g(x) with a Taylor expansion about 0 can be expressed as

g(x) =
∞

∑
n=0

an xn , (2.73)

for some coefficients an. If we act Ŝ on this function, we find

Ŝg(x) =−i
∞

∑
n=0

an x
d
dx

xn =−i
∞

∑
n=0

nan xn . (2.74)

Therefore, if m powers of Ŝ act on g(x), it returns

Ŝmg(x) =
∞

∑
n=0

an

(
−ix

d
dx

)m

xn =
∞

∑
n=0

(−in)man xn . (2.75)

Now, the action of the exponentiated operator on g(x) is

eiα Ŝg(x) =
∞

∑
m=0

(iα)m

m!
Ŝmg(x) =

∞

∑
m=0

∞

∑
n=0

(iα)m

m!
(−in)manxn (2.76)

=
∞

∑
n=0

anxn
∞

∑
m=0

(nα)m

m!
=

∞

∑
n=0

enα anxn =
∞

∑
n=0

an (eα x)n

= g(eα x) .

That is, this operator rescales the coordinate x.
2.6 (a) For the matrix M, its characteristic equation is

det(M−λ I) = det
(

a−λ b
c d −λ

)
= (a−λ )(d −λ )−bc (2.77)

= λ 2 − (a+d)λ +(ad −bc) = 0 .

We canwrite this in a very nice way in terms of the trace and the determinant
of M:

det(M−λ I) = λ 2 − (trM)λ +detM= 0 . (2.78)

(b) Solving for the eigenvalues, we find

λ =
trM±

√
(trM)2 −4detM

2
. (2.79)

So, the eigenvalues are real iff (trM)2 ≥ 4detM, or, in terms of the matrix
elements,

(a+d)2 ≥ 4(ad −bc) . (2.80)
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