
1 Solutions to Chapter 1 Exercises

1.1

Exercise 1.1.1 According to the prescription of the text, we assume that the solutions in the two

regions take the form

Ψ1(x) = A1 sin(Kx) +B1 cos(Kx) , (1.1.1)

and

Ψ2(x) = A2e
κx +B2e

−κx . (1.1.2)

There is no need to write down the solution for Ψ3(x), since the complete solution is either

symmetric, in which case the derivative of Ψ2(x) vanishes at x = 0, or antisymmetric, therefore,

Ψ2(x) itself vanishes at x = 0.

The boundary conditions of the problem are

Ψ1

(
x = −a− b

2

)
= 0 −→ A1 sin

(
K

(
−a− b

2

))
+B1 cos

(
K

(
−a− b

2

))
= 0 . (1.1.3)

Ψ1

(
x = − b

2

)
= Ψ2

(
x = − b

2

)
−→ A1 sin

(
K

(
− b

2

))
+B1 cos

(
K

(
− b

2

))
= A2e

−κ b2 +B2e
κ b2

(1.1.4)

Ψ1

dx

∣∣∣∣
x=− b2

=
Ψ2

dx

∣∣∣∣
x=− b2

−→ A1K cos

(
K

(
− b

2

))
−B1K sin

(
K

(
− b

2

))
= A2κe

κ b2−B2κe
−κ b2 ,

(1.1.5)

and finally,

Ψ2(x = 0) = 0 −→ A2 +B2 = 0 (1.1.6)

i.e., A2 = −B2 for the antisymmetric case, or

Ψ2

dx

∣∣∣∣
x=0

= 0 −→ A2κ−B2κ = 0 , (1.1.7)

i.e., A2 = B2 for the symmetric case. Regarding the amplitudes A1, B1, A2 and B2 as the

unknowns, we get a homogeneous set of four linear equations, which means that in order to
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2 Solutions to Chapter 1 Exercises

have a solution, the determinant of the corresponding matrix must vanish. From this condition,

we arrive at the equation

κ sin aK cosh
κb

2
+K cos aK sinh

κb

2
= 0 (1.1.8)

for the antisymmetric case, and

κ sin aK sinh
κb

2
+K cos aK cosh

κb

2
= 0 (1.1.9)

for the symmetric one. Dividing by cos aK and cosh
bκ

2
, or sinh

bκ

2
, respectively, we get

tan aK

K
= −

tanh
bκ

2
κ

(1.1.10)

tan aK

K
= −

coth
bκ

2
κ

(1.1.11)

for the antisymmetric and symmetric case, respectively.

We have an additional equation, which links K and κ. Namely,

h̄2K2

2m
= E (1.1.12)

h̄2κ2

2m
= U0 − E , (1.1.13)

i.e.,

κ =

√
2mU0

h̄2 −K2 . (1.1.14)

Then the two equations above, Eqs. (1.1.10-1.1.11), lead to two equations for K, where a, b and

2mU0/h̄
2 play the role of parameters. Let us note that in Eq. (1.1.14), κ becomes imaginary,

when h̄2K2/2m > U0. This means that in that case, we have real sine and cosine solutions in

the barrier, which is a simple consequence of the fact that the particle’s energy is larger than

the “confining” potential, i.e., the particle is not bound in that region.

The attached Mathematica code contains the derivation and the graphical solutions of the

two equations above. A typical case is shown in Fig. 1.1, where a = 1, 2mU0/h̄
2 = 100, and

b = 0.1, or b = 0.02. We plotted only K > 0, since the equations are invariant under the

transformation K ↔ −K. By trying various values for b, we notice that as we increase b, the

energy of the symmetric solution drops rapidly, while that of the antisymmetric is more or less

constant. In particular, when b → 0, the right hand side of Eq. (1.1.11) tends to −∞, which

means that the first solution will be at K = π/2. At the same time, the right hand side of

Eq. (1.1.10) tends to 0, i.e., all solutions of that equation will be at integer multiples of π.

This immediately answers the second question of the problem, because the wave number of

the symmetric solution is exactly half of that of the asymmetric solution. Also, if we keep the

thickness of the barrier constant, and increase the potential, the two solutions separate more

and more.
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k [a.u.]tFig. 1.1 The functions in Eqs. (1.1.10)-(1.1.11) of Exercise 1.1.1 for a = 1, b = 0.1, and

2mU0/h̄
2 = 100 on the left hand side, and for a = 1, b = 0.02, and 2mU0/h̄

2 = 100

on the right hand side. The common left hand side of the equations is shown in solid

red; the long-dashed green is the right hand side of Eq. (1.1.10) for the asymmetric

solution; while the short-dashed blue line is the right hand side of Eq. (1.1.11) for the

symmetric solution.

Next, we calculate the first roots of Eqs.(1.1.10)-(1.1.11) as a function of the barrier width,

b. We see from Fig. 1.1 that both of these roots are in the interval [π/2, π], and no other roots

are to be found there. This means that we can use this interval for bracketing the solutions.

The results are shown in Fig. 1.2. We can notice that for b→ 0, we indeed have a factor of 2 in

the values of the wave number, while for b → ∞, the two energies will virtually be the same.

This behavior can be understood, if we notice that as b→∞, the overlap of the wavefunctions

in the central region goes to zero, so the solutions become decoupled.

Once we have the value of K, we can solve for A1, B1, A2 and B2, which give the wavefunc-

tions. Two typical solutions are shown in Fig. 1.3, for a = 1, 2mU0/h̄
2 = 100, and b = 0.1, or

b = 0.3.
Mathematica code:

(* ========= Matrix describing the antisymmetric configuration ======== *)
MatAnti := {{Sin[k*(-a - b/2)], Cos[k*(-a - b/2)], 0, 0}, {Sin[-k*b/2],
Cos[-k*b/2], -Exp[-kappa*b/2], -Exp[kappa*b/2]}, {k*Cos[-k*b/2], -k*
Sin[-k*b/2], -kappa*Exp[kappa*b/2], kappa*Exp[-kappa*b/2]}, {0, 0, 1,
1}}
MatrixForm[MatAnti]
DetMat = Det[MatAnti]
DetMat2 = FullSimplify[DetMat]

(* =========== Matrix describing the symmetric configuration ========== *)
MatSim := {{Sin[k*(-a - b/2)], Cos[k*(-a - b/2)], 0, 0}, {Sin[-k*b/2],
Cos[-k*b/2], -Exp[-kappa*b/2], -Exp[kappa*b/2]}, {k*Cos[-k*b/2], -k*
Sin[-k*b/2], kappa*Exp[kappa*b/2], -kappa*Exp[-kappa*b/2]}, {0, 0,
kappa, -kappa}}
MatrixForm[MatSim]
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btFig. 1.2 The first roots of Eqs. (1.1.10)-(1.1.11) of Exercise 1.1.1 as a function of b, for a = 1,

and 2mU0/h̄
2 = 100. The solid red line belongs to the antisymmetric solution, while

the dashed green line to the symmetric case.

tFig. 1.3 The symmetric (solid red line) and antisymmetric (dashed green line) wave functions

for Exercise 1.1.1 for a = 1, b = 0.1, and 2mU0/h̄
2 = 100 on the left hand side, while

a = 1, b = 0.3, and 2mU0/h̄
2 = 100 on the right hand side.

DetMat = Det[MatSim]
DetMat3 = FullSimplify[DetMat]

(* ================= Here we plot the two solutions ================== *)
Plot[{DetMat3 /. {kappa -> Sqrt[20 - k^2], a -> 1, b -> 0.1},
DetMat2 /. {kappa -> Sqrt[20 - k^2], a -> 1, b -> 0.1}}, {k, 0, 4},
PlotStyle -> {RGBColor[1, 0, 0],
RGBColor[0, 1, 0]}]
(* ==== Red is the symmetric, green is the antisymmetric solution.

Also, this is the case of strong coupling, for b=0.01 ==== *)

(* ==== Now, we try to find the solutions
Note that we need to use eps,
in order to avoid a run-away solution ===== *)

eps = .1
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Ksym = k /. FindRoot[DetMat3 /. {
kappa -> Sqrt[20 - k^2], a -> 1, b -> 0.1} ,

{k, eps, 4}]
Kanti = k /. FindRoot[DetMat2 /. {kappa -> Sqrt[

20 - k^2], a -> 1, b -> 0.1} ,
{k, eps, 4}]

(* === We fix a=1, b=0.1, 2mV/hbar^2=20 here === *)
a = 1;
b = .1;
kappa1 = Sqrt[20 - Ksym^2] ;
Bs = (-Sin[Ksym*b/2] + Tan[Ksym*(a + b/2)]*Cos[Ksym*b/

2])/(Exp[-kappa1*(b/2)] + Exp[kappa1*(b/2)]) ;
ps1 = Plot[Sin[Ksym*x] + Tan[Ksym*(a + b/2)]*Cos[Ksym*x], {

x, -a - b/2, -b/2}, PlotStyle -> RGBColor[1, 0, 0]] ;
ps2 = Plot[Bs*(Exp[kappa1*(x)] + Exp[-

kappa1*(x)]), {x, -b/2, b/2}, PlotStyle -> RGBColor[1, 0, 0]]
ps3 = Plot[-Sin[Ksym*x] + Tan[Ksym*(a + b/2)]*

Cos[Ksym*x], {x, b/2, a + b/2}, PlotStyle -> RGBColor[1, 0, 0]] ;

Show[ps1, ps2, ps3]

(* ===== The antisymmetric solutions can be obtained in a similar way ===== *)

a = 1;
b = .1;
kappa2 = Sqrt[20 - Kanti^2] ;
Ba = (-Sin[Kanti*b/2] + Tan[Kanti*(a + b/2)]*
Cos[Kanti*b/2])/(Exp[-kappa2*(b/2)] - Exp[kappa2*(b/2)]) ;
pa1 = Plot[Sin[Kanti*x] + Tan[Kanti*(a + b/2)]*Cos[Kanti*x], {

x, -a - b/2, -b/2}, PlotStyle -> RGBColor[0, 1, 0]] ;
pa2 = Plot[Ba*(Exp[kappa2*(x)] -
Exp[-kappa2*(x)]), {x, -b/2, b/2}, PlotStyle -> RGBColor[0, 1, 0]]

pa3 = Plot[Sin[Kanti*x] - Tan[Kanti*(a + b/2)]*Cos[Kanti*x], {x, b/2,
a + b/2}, PlotStyle -> RGBColor[0, 1, 0]] ;

Show[{pa1, pa2, pa3}]

Exercise 1.1.2 a) Assuming that the coupling term is negative, we write the matrix of the Hamil-

tonian,

H =

(
E1 −U12

−U12 E2

)
(1.1.15)

which has the eigenvectors

|v1〉 =

(
1,

√
4U2

12 + (E1 − E2)2 + E2 − E1

2U12

)

|v2〉 =

(
1,
−
√

4U2
12 + (E1 − E2)2 + E2 − E1

2U12

)
(1.1.16)
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6 Solutions to Chapter 1 Exercises

with the eigenvalues

Ẽ1 =
E1 + E2

2
−

√(
E1 − E2

2

)2

+ U2
12

Ẽ2 =
E1 + E2

2
+

√(
E1 − E2

2

)2

+ U2
12 . (1.1.17)

In the case of two identical atoms, i.e., E1 = E2, the two eigenvectors reduce to

|v1〉 = (1, 1)

|v2〉 = (1,−1) , (1.1.18)

while the eigenvalues become

Ẽ1 = E1 − U12

Ẽ2 = E1 + U12. (1.1.19)

Therefore, the magnitudes of the coefficients of the second vector are the same, but the signs

are opposite, while the coefficients of the first vector are equal. Since the new wave function

should still be normalized, i.e.,

1 = 〈v|v〉 = (c∗1〈ψ1| ± c∗1〈ψ2|) (c1|ψ1〉 ± c1|ψ2〉) = |c1|2 〈ψ1|ψ1〉︸ ︷︷ ︸
=1

+|c1|2 〈ψ2|ψ2〉︸ ︷︷ ︸
=1

= 2|c1|2 ,

(1.1.20)

the magnitude of c1 = 1/
√

2 and c2 is 1/
√

2. Note that we made use of the fact that the overlap

between different wave functions is small, i.e., |ψ1〉 and |ψ2〉 are nearly orthogonal. Since for

c1 = c2 the energy is lowered, c1 = c2 corresponds to the bonding state, while c1 = −c2, raising

the energy, gives the antibonding configuration.

b) When there is substantial overlap between the atomic wave functions, we have to start

from scratch, to use (1.1.10) from the book, which we write as (for negative coupling −U12)

c1E1 − c2U12 = c1E + c2E〈ψ1|ψ2〉
−c2U12 − c2E2 = c2E + c1E〈ψ2|ψ1〉 (1.1.21)

or (
E1 −U12 − E〈ψ1|ψ2〉

−U12 − E〈ψ1|ψ2〉∗ E2

)(
c1
c2

)
= E

(
c1
c2

)
(1.1.22)

There is therefore a correction to the coupling (overlap) energy, proportional to

I12 = 〈ψ1|ψ2〉. (1.1.23)

The first-order correction for the case of identical atoms can be obtained by setting E = E1 =

E2 inside the matrix.

In addition, there is a correction to the normalization of the wave functions. For the case of

identical atoms, the eigenstates are still of the form

|Ψ〉 =
1√
2

(|ψ1〉 ± |ψ2〉) , (1.1.24)
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i.e.,

〈Ψ|Ψ〉 =
1√
2

(〈ψ1| ± 〈ψ2|)
1√
2

(|ψ1〉 ± |ψ2〉) =
1

2
(2± 〈ψ1|φ2〉 ± 〈ψ2|ψ1〉) (1.1.25)

= 1± Re I12 (1.1.26)

where I12 is the overlap integral of the two states. Therefore, the energies of the states are, to

the next order of approximation,

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

=
E1 ∓ |U12 + E1I12|

1± Re I12
. (1.1.27)

c) In this third part of the problem, we first have to determine the two basis functions.

Taking one quantum well, the potential is infinite on one side, while it has height U0 on the

other side. That is, for the lowest-lying state, we can search for the solution as

φ1(x) = A sin(kx) ≡ φ−1 (x), 0 < x < a (1.1.28)

φ1(x) = Be−κx ≡ φ+
1 (x), x > a (1.1.29)

with the boundary conditions

φ−1 (0) = 0 (1.1.30)

φ+
1 (a) = φ+

1 (a) (1.1.31)

dφ−1
dx

∣∣∣∣
x=a

=
dφ+

1

dx

∣∣∣∣
x=a

. (1.1.32)

With the specific choice in Eq. (1.1.28), the boundary condition in Eq.(1.1.30) is automatically

satisfied, while the second and third boundary condition leads to the two equations

A sin(ka) = Be−κa (1.1.33)

Ak cos(ka) = −Bκe−κa , (1.1.34)

or

tan(ka)

k
= − 1

κ
. (1.1.35)

As in Exercise 1.1.1, we still have

κ =

√
2mU0

h̄2 − k2 . (1.1.36)

From the same numerical approach as used in Exercise 1.1, we find for the case a = 1, b = 0.1

and 2mU0/h̄
2 = 100, that the lowest k that satisfies Eq.(1.1.35) is k = 2.85. The reason for

choosing this value of U0 is that this is the one that we thoroughly studied in Exercise 1.1.1.

The values of A and B are fixed by the condition that the wave function is normalized. We

impose the normalization condition

1 = A2

∫ a

0

dx sin2 kx+B2

∫ ∞
a

dx e−2κx =
A2(2ka− sin 2ka)

4k
+
B2e−2aκ

2κ
. (1.1.37)
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8 Solutions to Chapter 1 Exercises

Using the continuity condition in Eq. (1.1.33), we can rewrite the normalization as

1 =
A2(2ka− sin 2ka)

4k
+
A2 sin2 ka

2κ
, (1.1.38)

i.e.,

A =

(
(2ka− sin 2ka)

4k
+

sin2 ka

2κ

)−1/2

, (1.1.39)

and

B =

(
(2ka− sin 2ka)

4k
+

sin2 ka

2κ

)−1/2

eκa sin ka . (1.1.40)

This gives us one of the basis functions, φ1(x), using these values of A and B in Eqs. (1.1.28)-

(1.1.29). We get the other one by centering it on the second well, after reflecting it with respect

to x = 0, and shifting it to the right by 2a+ b. This gives

φ2(x) = A sin[k(−x+ 2a+ b)], a+ b < x < 2a+ b (1.1.41)

φ2(x) = Be−κ(−x+2a+b), x < a+ b (1.1.42)

Having obtained the two basis functions, we can calculate the energy of the system using

Eq. (1.1.27). When we do not assume orthogonality, we need the overlap integral I12, which

we can calculate noting that while the wavefunctions extend to infinity or minus infinity, their

product is non-zero over a finite interval [0, 2a + b] only, because outside this interval one of

the wavefunctions is zero. Therefore,

I12 =

∫ ∞
−∞

dx φ1(x)φ2(x) =

∫ 2a+b

0

dx φ1(x)φ2(x)

= 2AB

∫ a

0

dx sin kx eκxe−κ(2a+b) +B2

∫ a+b

a

dx e−κxeκxe−κ(2a+b)

= 2ABe−κ(2a+b)

[
(κ sin ka− k cos ka)eκa

κ2 + k2
+

k

κ2 + k2

]
+B2be−κ(2a+b)

= 2ABe−κ(2a+b)

[
h̄2((κ sin ka− k cos ka)eκa + k)

2mU0

]
+B2be−κ(2a+b)

(1.1.43)

where we used the result of Eq.(1.1.36).

We will also need the integral for U12, i.e.,

−U12 =

∫ 2a+b

0

dx φ2(x)

[
− h̄2

2m

d2

dx2
+ U(x)

]
φ∗1(x). (1.1.44)

Since the wave functions are real, U12 = U21 is real. Now, since U(x) = U0 for a < x < a + b
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and 0 otherwise,

[
− h̄2

2m

d2

dx2
+ U(x)

]
φ1(x) =



h̄2k2

2m
φ1(x) , 0 < x < a

(
−h̄2κ2

2m
+ U0

)
φ1(x) =

h̄2k2

2m
φ1(x), a < x < a+ b

− h̄
2κ2

2m
φ1(x) , a+ b < x < 2a+ b

(1.1.45)

where we have used Eq. (1.1.36). Therefore, since E = h̄2k2/2m,

−U12 − EI12 = AB

∫ 2a+b

a+b

dx sin[k(2a+ b− x)]e−κa
h̄2

2m
(−κ2 − k2)

= −ABU0

∫ 2a+b

a+b

dx sin[k(2a+ b− x)]e−κa

= −ABU0e
−κ(2a+b) k + eκa(κ sin ka− k cos ka)

κ2 + k2

= − h̄2

2m
ABe−κ(2a+b)[k + eκa(κ sin ka− k cos ka)], (1.1.46)

which is always negative for E < U and k < π/a, as assumed.

In the Mathematica code given below, we compare the results of Exercise 1.1.1, using K from

(1.1.10)-(1.1.11) and κ from (1.1.14) of that exercise, and Eq. (1.1.27) of the present exercise,

using (1.1.43) for I12 and (1.1.46) for U12, with (1.1.39) and (1.1.40) for A and B and (1.1.35)

and (1.1.36) for k and κ. Fig. 1.4 shows the main results. These are plotted as a function of

the separation b of the two “atoms”, for the case a = 1, and 2mU0/h̄
2 = 100. We choose the

units in such a way that 2m/h̄2 = 1. The approximation is quite good down to about b = 0.1.

If we do not account for the overlap integral, then using (1.1.45), we have

−U12 =
h̄2

2m
(k2 − κ2)ABe−κ(2a+b)

[
((κ sin ka− k cos ka)eκa + k)

k2 + κ2

]
+
h̄2k2

2m
B2be−κ(2a+b)

(1.1.47)

Equation (1.1.27) is used with I12 = 0. As seen in Figure 1.4, this approximation is good down

to about b = 0.2.
Mathematica code:

(* ======== Full solution from Exercise 1.1 ============= *)

Clear[b]
U = 100;
a = 1;
kappa := Sqrt[U - K^2]
k2p := K /. FindRoot[Tan[K*a]/K + Tanh[b*kappa/2]/kappa, {K, 1.5, 4}]
k2n := K /. FindRoot[Tan[K*a]/K + Coth[b*kappa/2]/kappa, {K, 2, 4}]

(* ======== Now LCAO solution using same parameters ============= *)

Ep := E1 + Abs[V12]
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10 Solutions to Chapter 1 Exercises

tFig. 1.4 LCAO approximation compared to the full solution for the case 2mU0/h̄
2 = 100,

a = 1, for Exercise 1.2. Top: the overlap integral I12 as a function of the atomic

separation b. Middle: the energy of the LCAO approximation (blue and yellow lines)

compared to the full solution (red and green lines). Bottom: the energy of the LCAO

approximation with no correction for the overlap integral (blue and yellow lines)

compared to the full solution (red and green lines).
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En := E1 - Abs[V12]
k1 = K /. FindRoot[Tan[K*a]/K + 1/Sqrt[U - K^2], {K, 1.5, 4}];
kappa1 = Sqrt[U - k1^2];
A = 1/Sqrt[(2*k1*a - Sin[2*k1*a])/(4*k1) + Sin[k1*a]^2/(2*kappa1)];
B = A*Exp[kappa1*a]*Sin[k1*a];
V12 := A*B*
Exp[-kappa1*(2*a + b)]*(k1 +
Exp[kappa1*a]*(kappa1*Sin[k1*a] - k1*Cos[k1*a]))

E1 := k1^2
I12 := 2*A*B*

Exp[-kappa1*(2*a + b)]*((kappa1*Sin[k1*a] - k1*Cos[k1*a])*
Exp[kappa1*a] + k1)/U + B^2*b*Exp[-kappa1*(2*a + b)]

(* ======== Now LCAO solution with no overlap correction ============= *)

V12no := (k1^2 - kappa1^2) A*B*
Exp[-kappa1*(2*a + b)]*(k1 +

Exp[kappa1*a]*(kappa1*Sin[k1*a] - k1*Cos[k1*a]))/(k1^2 +
kappa1^2) + k1^2*B^2*b*Exp[-kappa1*(2*a + b)]

Epno := E1 + Abs[V12no]
Enno := E1 - Abs[V12no]

(* We plot the results here. Only variable is b *)

Plot[I12, {b, 0, 1}, PlotRange -> {0, .06}]
Plot[{k2p^2, k2n^2, En/(1 + I12), Ep/(1 + I12)}, {b, 0, 1},
PlotRange -> {2, 11}]

Plot[{k2p^2, k2n^2, Enno, Epno}, {b, 0, 1}, PlotRange -> {2, 11}]

1.2

Exercise 1.2.1 In the two regions, we seek for the solution in the form

Ψ1(x) = A1e
iKx +B1e

−iKx , (1.2.1)

and

Ψ2(x) = A2e
κx +B2e

−κx . (1.2.2)

The boundary conditions at x = 0 are

Ψ1(x = 0) = Ψ2(x = 0) −→ A1 +B1 = A2 +B2 . (1.2.3)

dΨ1

dx

∣∣∣∣
x=0

=
dΨ2

dx

∣∣∣∣
x=0

(1.2.4)

−→ A1iK −B1iK = κA2 − κB2 . (1.2.5)

Similarly, at x = a, using the fact that

Ψ3(x = a) = Ψ2(x = −b)eik(a+b) , (1.2.6)
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