Exercises

1.1 Numbers 101: The Very Basics

1. (a) The claim makes sense and is true.
(b) The claim makes no sense; $\sqrt{8}$ isn't a subset.
(c) The claim makes sense and is true.
(d) The claim makes sense but is false; consider $a=0$ and $b=\sqrt{2}$.
(e) The claim makes sense and is true.
(f) The claim makes sense but is false: consider $a=0$.
2. (a) The claim is false; let $a=\sqrt{2}$.
(b) The expression \mathbb{Q}^{2} doesn't make sense.
(c) The claim is true. Since $a^{2}>0$, some large n will work.
(d) The claim is true; see Theorem ??
(e) If $a \in \mathbb{Q}$ and $a \neq 0$, then $a \sqrt{2} \notin \mathbb{Q}$.
3. The number $1 / a$ is an integer only if $a= \pm 1$. The number $1 / a$ is rational for all nonzero integers a. The equation $1 / a=a$ holds only if $a= \pm 1$.
4. (a) $1 \in S_{1}$ but $-1 \notin S_{1}$
(b) $2 \in S_{2}$ but $1 / 2 \notin S_{2}$
(c) $\sqrt{2} \in S_{3}$ but $1 / \sqrt{2}=\sqrt{2} / 2 \notin S_{3}$
5. (a) $1 \in S_{1}$ but $-1 \notin S_{1}$
(b) $2 \in S_{2}$ but $1 / 2 \notin S_{2}$
(c) $\sqrt{2} \in S_{3}$ but $1 / \sqrt{2}=\sqrt{2} / 2 \notin S_{3}$
(d) $\pi \in S_{4}$ but $\pi^{2} \notin S_{4}$
6. Theorem ?? is useful. Because \mathbb{Q} is closed under addition, multiplication, and division (if denominators aren't zero), expressions like those in (a) and (b) are rational-unless, for (b), $p=q=0$. Expressions involving square roots are different. If $p=q=1$, for instance, then $\sqrt{p^{2}+q^{2}}=\sqrt{2}$ is irrational; the same expression is rational if $p=$ 3 and $q=4$. The quantity $\sqrt{p^{2}+2 p q+q^{2}}$ is always rational, since $\sqrt{p^{2}+2 p q+q^{2}}=\sqrt{(p+q)^{2}}= \pm(p+q)$. (Note that $\sqrt{(p+q)^{2}}=p+q$ may be false.)
7. All of $x y, x+y, x-y$ and x / y can be either rational or irrational. Examples are easy to find.
8. The quantities in (a), (b), (c), (d) and (f) are all irrational; proofs are by contradiction. (E.g., if x / r were rational, then we could multiply by the rational number r. Then the product x is also rational, a contradiction.) \sqrt{r} can go either way.
9. Assume toward contradiction that $\sqrt{3}=a / b$ for integers a and b, where a / b is in reduced form. Then squaring both sides gives $3 b^{2}=a^{2}$. This implies (essentially as in the proof of Theorem ??) that 3 divides both a and b, which contradicts the assumption that a / b is in reduced form.
10. (a) Say $x^{2} \notin \mathbb{Q}$. If $x \in \mathbb{Q}$, then (by Theorem ??) x^{2} is rational, too, which contradicts our assumption.
(b) Another proof by contradiction. If $x=\sqrt{2}+\sqrt{3}$ is rational, then $x^{2}=5+2 \sqrt{6}$ is rational, too. This implies, in turn, that $\sqrt{6}$ is rational, which is absurd.
(c) Yet another proof by contradiction. Let's write $x=\sqrt{2}+\sqrt{3}+\sqrt{5}$, then we have $x-\sqrt{5}=\sqrt{2}+\sqrt{3}$, and suppose x is rational. Squaring both sides of the last equation and simplifying gives

$$
x^{2}-2 x \sqrt{5}=2 \sqrt{6}
$$

which is progress, since only two square roots remain. Squaring again gives

$$
x^{4}-4 x^{3} \sqrt{5}+20 x^{2}=24
$$

which is even better, as only one square root is left. The last equation implies that

$$
\sqrt{5}=\frac{x^{4}+20 x^{2}-24}{4 x^{3}}
$$

Because x is rational, so is the right-hand side above, and thus so is the left. This absurdity completes the proof.
11. Parts (i) and (ii) follow from the fact that $1<a / b<2$. For part (iii), note that

$$
\frac{a^{\prime 2}}{b^{\prime 2}}=\frac{(2 b-a)^{2}}{(a-b)^{2}}=\frac{4 b^{2}-4 a b+a^{2}}{a^{2}-2 a b+b^{2}}
$$

and substituting $a^{2}=2 b^{2}$ shows that the last fraction is 2 .
This all shows that if $\sqrt{2}=a / b$ holds for any positive integers a and b, then we can find a new fraction a^{\prime} / b^{\prime} with $\sqrt{2}=a^{\prime} / b^{\prime}$ and $b^{\prime}<b$, which is absurd.
12. (a) \mathbb{Z}_{2} is not closed under addition: $1+1=2 \notin \mathbb{Z}_{2}$.
(b) \mathbb{Z}_{2} satisfies all the requirements in Theorem ??.
13. Matrix addition in $M_{2 \times 2}$ is commutative, but multiplication is not; examples are easy to find. Every matrix A in $M_{2 \times 2}$ has an additive inverse $-A$, but multiplicative inverses exist only for some nonzero matrices (those with nonzero determinant); again, examples are easy to find. Distributivity does indeed hold in $M_{2 \times 2}$.
14. If a and b are rational, then

$$
\frac{1}{a+b \sqrt{2}}=\frac{a-b \sqrt{2}}{a^{2}+2 b^{2}}
$$

This shows that elements of F have multiplicative inverses in F. The rest is easier.
15. Since $\ln \ln \ln n$ tends to infinity, it must exceed two for large n. The wellordering property guarantees that a smallest such n_{0} exists. (Using a calculator we can see that n_{0} has about 703 decimal digits.)
16. (a) The answer is no. For instance, the set $\{1,1 / 2,1 / 3, \ldots\}$ is a subset of \mathbb{Q}, but has no least element.
(b) The set $R=\{1,10,100,1000, \ldots\}$ does have the well-ordering property; every nonempty subset includes a smallest power of 10 .
(c) The set $T=\{-3,-2,-1, \ldots, 41,42\}$ (like all finite sets of real numbers) does have the well-ordering property, since every nonempty subset of T is also finite, and hence has a least element.
(d) If we trade "least" for "greatest" in the well-ordering property, the result no longer holds for \mathbb{N}, since \mathbb{N} itself has no greatest element. The property does hold for the finite set T, and also for $\mathbb{Z} \backslash \mathbb{N}=$ $\{\ldots,-3,-2,-1,0\}$.

1.2 Sets 101: Getting Started

1. (a) $D \subset I ; D \in C$.
(b) $B=\{m \in A \mid m$ has 31 days $\}$.
(c) $A \times D$ is the set of ordered pairs (January, 2), (February, 2), \ldots, (December, 2), (January, 3), (February, 3), ..., (December, 3). There are 24 such pairs.
(d) $A \backslash B=\{$ February, April, June, September, November $\} ; B \backslash A=\emptyset$; $A \cap C=\{$ November $\} ; B \cap A=B ; D \cap I=D ; D \cup I=I$.
2. (a) $S=\{0,-1\} ; T$ is the interval of numbers between $(-1-\sqrt{21}) / 2 \approx$ -2.791 and $(-1+\sqrt{21}) / 2 \approx 1.791$.
(b) Decide whether each of the following statements is true or false, and explain: $S \subset \mathbb{N}$ is false because $-1 \notin \mathbb{N} ; S \subset T$ is true; $T \cap \mathbb{Q} \neq \emptyset$ is true, since $0 \in T \cap \mathbb{Q} ;-2.8 \in \mathbb{Q} \backslash T$ is true.
(c) The quadratic formula shows that $U=\left\{x \in \mathbb{R} \mid x^{2}+x<0\right\}=$ $(-1,0)$.
3. (a) $\mathbb{R} \backslash A=(-\infty, 1) \cup(3, \infty)$
(c) $\mathbb{R} \backslash A=(-\infty, 1]) \cup[2,3] \cup[4, \infty)$
(e) $\mathbb{R} \backslash A=\{0\}$
4. (a) $\mathbb{R} \backslash[a, b]=(-\infty, a) \cup(b, \infty)$
(b) $I=(-\infty, \infty)$ has empty complement; $I=(-\infty, 17)$ has closed complement $[17, \infty) ; I=(0,17)$ has complement $(-\infty, 0] \cup[17, \infty)$.
(c) $\mathbb{R} \backslash \mathbb{Z}=(0,1) \cup(-1,0) \cup(1,2) \cup(-2,-1) \cup \ldots$
5. To say that a is in $\mathbb{R} \backslash(\mathbb{R} \backslash A)$ means that a is not in $\mathbb{R} \backslash A$; this means, in turn that $a \in A$.
6. (a) Claim (i) is false. As one example, take $A=\mathbb{R}$ and $B=\emptyset$. Then $R \backslash(A \cup B)=\emptyset$ but $(R \backslash A) \cup(R \backslash B)=\mathbb{R}$.
(b) If $A=B$, then $A \cup B=A \cap B=A$, and both claims are clearly true.
(c) To prove that (ii) holds, suppose $x \in \mathbb{R} \backslash(A \cup B)$. Thus $x \notin A \cup B$, so $x \notin A$ and $x \notin B$; in other words, $x \in \mathbb{R} \backslash A$ and $x \in \mathbb{R} \backslash B$. This is just another way of saying that $x \in(\mathbb{R} \backslash A) \cap(\mathbb{R} \backslash B)$. The "vice versa" implication is similar.
7. We know $\mathbb{R} \backslash A_{1}=(-\infty, 1] \cup[3, \infty)$ and $\mathbb{R} \backslash A_{2}=(-\infty, 2] \cup[5, \infty)$. Also, $\mathbb{R} \backslash\left(A_{1} \cap A_{2}\right)=(-\infty, 2] \cup[3, \infty)$ and $\mathbb{R} \backslash\left(A_{1} \cup A_{2}\right)=(-\infty, 1] \cup[5, \infty)$.
It's easy to see that, as claimed, $\mathbb{R} \backslash\left(A_{1} \cap A_{2}\right)=(-\infty, 2] \cup[3, \infty)=$ $(-\infty, 1] \cup[3, \infty) \cup(-\infty, 2] \cup[5, \infty)=\left(\mathbb{R} \backslash A_{1}\right) \cup\left(\mathbb{R} \backslash A_{2}\right)$. Similarly, $\mathbb{R} \backslash$ $\left(A_{1} \cup A_{2}\right)=(-\infty, 1] \cup[5, \infty)=((-\infty, 1] \cup[3, \infty)) \cap\left((-\infty, 2] \cup[5, \infty)=\left(\mathbb{R} \backslash A_{1}\right) \cup\left(\mathbb{R} \backslash A_{2}\right)\right.$
8. Here we have $A_{1} \cup A_{2}=(0,1) \cup(2, \infty)$ and $A_{1} \cap A_{2}=\emptyset$. Thus $\mathbb{R} \backslash A_{1}=$ $(-\infty, 0] \cup[1, \infty)$ and $\mathbb{R} \backslash A_{2}=(-\infty, 2]$. This implies that $\left(\mathbb{R} \backslash A_{1}\right) \cup$ $\left(R \backslash A_{2}\right)=(-\infty, \infty)$ and $\left(\mathbb{R} \backslash A_{1}\right) \cap\left(R \backslash A_{2}\right)=(-\infty, 0) \cup[1,2]$. Consistent with De Morgan, $\mathbb{R} \backslash\left(A_{1} \cap A_{2}\right)=(-\infty$, infty $) ; \mathbb{R} \backslash\left(A_{1} \cup A_{2}\right)=$ $(-\infty, 0] \cup[1,2]$.
9. If $x \in T^{\prime}$ then $x \notin T$. Since $T \supset S$, we have $x \notin S$, which means $x \in S^{\prime}$, as desired.
10. Many possibilities exist for (a), (b), and (c). For (d) we could use $I=$ $(0, \infty)$ and $J=(1, \infty)$; note that here, as in all possibilities for (d), one interval is contained in the other.
11. (a) $I=(-42,0)$ and $J=(0, \infty)$ work.
(b) $I=(-42,0)$ and $J=[0, \infty)$ work.
(c) The given conditions (draw a picture) mean that $a<c<0<b<d$, so $I \cup J=(a, d)$ which is indeed an open interval.
12. Suppose $a \in I \cup J, b \in I \cup J$, and $a<x<b$. We're done if we show that $x \in I \cup J$. This is trivial if $x=c$, so we assume $x \neq c$. Now if both $a \in I$ and $b \in I$, then $x \in I$ by Definition ??, and we're done. Similarly, we're done if both $a \in J$ and $b \in J$. So let's assume $a \in I$ and $b \in J$. If $x<c$, then we have $a<x<c$ with a and c in I; by Definition ??, $x \in I$, too. Similarly, if $x>c$, then we have $c<x<b$ and so $x \in J$. We're done.
13. It's easy for I and $\mathbb{R} \backslash I$ to be intervals. For instance, if $I=(-\infty, 0)$, then $\mathbb{R} \backslash I=[0, \infty)$ is another interval. I and $\mathbb{R} \backslash I$ cannot both be bounded intervals; two bounded intervals can't "add up" to the unbounded set $(-\infty, \infty)$.
14. No. Any finite set I of numbers contains a smallest number, say a, and a second smallest, say b. If I were an interval, it would also have to contain the average, $(a+b) / 2$, which lies (illegally) between a and b.
15. No. Suppose a and b are rational numbers in I, with $a<b$. Consider $c=a+(b-a) / \sqrt{2}$. Note that $c \in \mathbb{R} \backslash \mathbb{Q}$ and that $a<c<b$. If I were an interval, we'd have $c \in I$, which is impossible.
16. (a) $(1,2) \cup(3, \infty)$ is the union of two open intervals, and hence also open. The complement, $(-\infty, 2] \cup[2,3]$, is therefore closed.
(b) $\mathbb{R} \backslash\{a\}=(-\infty, a) \cup(a, \infty)$.
(c) $(-\infty, a)$ is itself an open interval, and therefore open. The complement of $(-\infty, a]$ is the open interval (a, ∞), so $(-\infty, a]$ is closed.
(d) If $I=(0,1)$ were closed, then $\mathbb{R} \backslash I$ would be open. This is false, because $1 \in \mathbb{R} \backslash I$, but no open interval containing 1 is contained in $\mathbb{R} \backslash I$.
17. (a) The complement of $\{1,2,3\}$ consists of four open intervals.
(b) $\mathbb{R} \backslash \mathbb{Z}$ is the union of all open intervals of the form $(n, n+1)$, where $n \in \mathbb{Z}$.
(c) If \mathbb{Q} were open, we could find for each rational q an open interval I with $q \in I \subseteq$. But $I \subseteq \mathbb{Q}$ is impossible.
