

PROBLEM 2.1

Two forces are applied as shown to a hook. Determine graphically the magnitude and direction of their resultant using (a) the parallelogram law, (b) the triangle rule.

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure:

$$
R=1391 \mathrm{kN}, \quad \alpha=47.8^{\circ}
$$

$$
\mathbf{R}=1391 \mathrm{~N} \backslash^{\top} 47.8^{\circ}
$$

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure:

$$
R=906 \mathrm{lb}, \alpha=26.6^{\circ}
$$

$$
R=906 \mathrm{lb} \measuredangle \subset 26.6^{\circ}
$$

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure:

$$
R=179 \mathrm{~N}, \quad \alpha=75.1^{\circ}
$$

$$
\mathbf{R}=179 \mathrm{~N}\left\ulcorner 75.1^{\circ}\right.
$$

PROBLEM 2.4

Two forces \mathbf{P} and \mathbf{Q} are applied as shown at Point A of a hook support. Knowing that $P=60 \mathrm{lb}$ and $Q=25 \mathrm{lb}$, determine graphically the magnitude and direction of their resultant using (a) the parallelogram law, (b) the triangle rule.

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure:

$$
R=77.1 \mathrm{lb}, \quad \alpha=85.4^{\circ}
$$

$$
\mathbf{R}=77.1 \mathrm{lb} \quad 85.4^{\circ}
$$

SOLUTION

Using the triangle rule and the law of sines:
(a)

$$
\frac{120 \mathrm{~N}}{\sin 30^{\circ}}=\frac{P}{\sin 25^{\circ}}
$$

$$
P=101.4 \mathrm{~N}
$$

(b)

$$
\begin{aligned}
30^{\circ}+\beta+25^{\circ} & =180^{\circ} \\
\beta & =180^{\circ}-25^{\circ}-30^{\circ} \\
& =125^{\circ} \\
\frac{120 \mathrm{~N}}{\sin 30^{\circ}} & =\frac{R}{\sin 125^{\circ}}
\end{aligned}
$$

$$
R=196.6 \mathrm{~N}
$$

PROBLEM 2.6

A telephone cable is clamped at A to the pole $A B$. Knowing that the tension in the left-hand portion of the cable is $T_{1}=800 \mathrm{lb}$, determine by trigonometry (a) the required tension T_{2} in the right-hand portion if the resultant \mathbf{R} of the forces exerted by the cable at A is to be vertical, (b) the corresponding magnitude of \mathbf{R}.

SOLUTION

Using the triangle rule and the law of sines:
(a)

$$
\begin{aligned}
75^{\circ}+40^{\circ}+\alpha & =180^{\circ} \\
\alpha & =180^{\circ}-75^{\circ}-40^{\circ} \\
& =65^{\circ}
\end{aligned}
$$

$$
\frac{800 \mathrm{lb}}{\sin 65^{\circ}}=\frac{T_{2}}{\sin 75^{\circ}}
$$

$$
T_{2}=853 \mathrm{lb}
$$

(b)

$$
\frac{800 \mathrm{lb}}{\sin 65^{\circ}}=\frac{R}{\sin 40^{\circ}}
$$

$$
R=567 \mathrm{lb}
$$

SOLUTION

Using the triangle rule and the law of sines:
(a)

$$
\begin{aligned}
75^{\circ}+40^{\circ}+\beta & =180^{\circ} \\
\beta & =180^{\circ}-75^{\circ}-40^{\circ} \\
& =65^{\circ}
\end{aligned}
$$

$$
\frac{1000 \mathrm{lb}}{\sin 75^{\circ}}=\frac{T_{1}}{\sin 65^{\circ}}
$$

$$
T_{1}=938 \mathrm{lb}
$$

(b)

$$
\frac{1000 \mathrm{lb}}{\sin 75^{\circ}}=\frac{R}{\sin 40^{\circ}}
$$

$$
R=665 \mathrm{lb}
$$

SOLUTION

Using the law of sines:

$$
\begin{aligned}
\frac{T_{A C}}{\sin 30^{\circ}} & =\frac{R}{\sin 125^{\circ}}=\frac{2.2 \mathrm{kN}}{\sin 25^{\circ}} \\
T_{A C} & =2.603 \mathrm{kN} \\
R & =4.264 \mathrm{kN}
\end{aligned}
$$

(a) $T_{A C}=2.60 \mathrm{kN}$
(b)

$$
R=4.26 \mathrm{kN}
$$

Using the law of cosines: $\quad T_{A C}{ }^{2}=(3 \mathrm{kN})^{2}+(4.8 \mathrm{kN})^{2}-2(3 \mathrm{kN})(4.8 \mathrm{kN}) \cos 30^{\circ}$

$$
T_{A C}=2.6643 \mathrm{kN}
$$

Using the law of sines: $\quad \frac{\sin \alpha}{3 \mathrm{kN}}=\frac{\sin 30^{\circ}}{2.6643 \mathrm{kN}}$

$$
\alpha=34.3^{\circ}
$$

$$
\mathbf{T}_{A C}=2.66 \mathrm{kN}{ }^{\top} 34.3^{\circ}
$$

SOLUTION

Using the triangle rule and law of sines:
(a)

$$
\begin{aligned}
\frac{\sin \alpha}{50 \mathrm{~N}} & =\frac{\sin 25^{\circ}}{35 \mathrm{~N}} \\
\sin \alpha & =0.60374 \\
\alpha & =37.138^{\circ} \\
\alpha+\beta+25^{\circ} & =180^{\circ} \\
\beta & =180^{\circ}-25^{\circ}-37.138^{\circ} \\
& =117.862^{\circ}
\end{aligned}
$$

$$
\alpha=37.1^{\circ}
$$

(b)

$$
\frac{R}{\sin 117.862^{\circ}}=\frac{35 \mathrm{~N}}{\sin 25^{\circ}}
$$

$$
R=73.2 \mathrm{~N}
$$

PROBLEM 2.11

A steel tank is to be positioned in an excavation. Knowing that $\alpha=20^{\circ}$, determine by trigonometry (a) the required magnitude of the force \mathbf{P} if the resultant \mathbf{R} of the two forces applied at A is to be vertical, (b) the corresponding magnitude of \mathbf{R}.

SOLUTION

Using the triangle rule and the law of sines:
(a)

$$
\begin{aligned}
\beta+50^{\circ}+60^{\circ} & =180^{\circ} \\
\beta & =180^{\circ}-50^{\circ}-60^{\circ} \\
& =70^{\circ}
\end{aligned}
$$

$$
\frac{425 \mathrm{lb}}{\sin 70^{\circ}}=\frac{P}{\sin 60^{\circ}}
$$

$$
P=392 \mathrm{lb}
$$

(b)

$$
\frac{425 \mathrm{lb}}{\sin 70^{\circ}}=\frac{R}{\sin 50^{\circ}}
$$

$$
R=346 \mathrm{lb}
$$

SOLUTION

Using the triangle rule and the law of sines:
(a)

$$
\begin{aligned}
\left(\alpha+30^{\circ}\right)+60^{\circ}+\beta & =180^{\circ} \\
\beta & =180^{\circ}-\left(\alpha+30^{\circ}\right)-60^{\circ} \\
\beta & =90^{\circ}-\alpha \\
\frac{\sin \left(90^{\circ}-\alpha\right)}{425 \mathrm{lb}} & =\frac{\sin 60^{\circ}}{500 \mathrm{lb}}
\end{aligned}
$$

$$
90^{\circ}-\alpha=47.402^{\circ}
$$

$$
\alpha=42.6^{\circ}
$$

(b)

$$
\frac{R}{\sin \left(42.598^{\circ}+30^{\circ}\right)}=\frac{500 \mathrm{lb}}{\sin 60^{\circ}}
$$

$$
R=551 \mathrm{lb}
$$

PROBLEM 2.13

A steel tank is to be positioned in an excavation. Determine by trigonometry (a) the magnitude and direction of the smallest force \mathbf{P} for which the resultant \mathbf{R} of the two forces applied at A is vertical, (b) the corresponding magnitude of \mathbf{R}.

SOLUTION

The smallest force P will be perpendicular to R.
(a) $\quad P=(425 \mathrm{lb}) \cos 30^{\circ}$

$$
\mathbf{P}=368 \mathrm{lb} \longrightarrow \mathbf{4}
$$

(b) $\quad R=(425 \mathrm{lb}) \sin 30^{\circ}$

$$
R=213 \mathrm{lb}
$$

SOLUTION

The smallest force P will be perpendicular to R.
(a) $P=(50 \mathrm{~N}) \sin 25^{\circ}$ $\mathbf{P}=21.1 \mathrm{~N} \downarrow$
(b) $\quad R=(50 \mathrm{~N}) \cos 25^{\circ}$
$R=45.3 \mathrm{~N}$

PROBLEM 2.15

The barge B is pulled by two tugboats A and C. At a given instant the tension in cable $A B$ is 4500 lb and the tension in cable $B C$ is 2000 lb . Determine by trigonometry the magnitude and direction of the resultant of the two forces applied at B at that instant.

SOLUTION

Using the law of cosines:

$$
\begin{aligned}
& \beta= 180^{\circ}-30^{\circ}-45^{\circ} \\
& \beta=105^{\circ} \\
& R^{2}=(4500 \mathrm{lb})^{2}+(2000 \mathrm{lb})^{2}-2(4500 \mathrm{lb})(2000 \mathrm{lb}) \cos 105^{\circ} \\
& R=5380 \mathrm{lb}
\end{aligned}
$$

Using the law of sines:

$$
\begin{aligned}
& \frac{R}{\sin \beta}=\frac{2000 \mathrm{lb}}{\sin \left(30^{\circ}-\alpha\right)} \\
& \frac{5380 \mathrm{lb}}{\sin 105^{\circ}}=\frac{2000 \mathrm{lb}}{\sin \left(30^{\circ}-\alpha\right)} \\
& \alpha=8.94^{\circ}
\end{aligned}
$$

$$
\mathbf{R}=5380 \mathrm{lb} \nless^{\circ} 8.94^{\circ}
$$

SOLUTION

Using the law of cosines:

$$
\begin{aligned}
R^{2}= & (900 \mathrm{~N})^{2}+(600 \mathrm{~N})^{2} \\
& -2(900 \mathrm{~N})(600 \mathrm{~N}) \cos \left(135^{\circ}\right) \\
R= & 1390.57 \mathrm{~N}
\end{aligned}
$$

Using the law of sines:

$$
\begin{aligned}
\frac{\sin \left(\alpha-30^{\circ}\right)}{600 \mathrm{~N}} & =\frac{\sin \left(135^{\circ}\right)}{1390.57 \mathrm{~N}} \\
\alpha-30^{\circ} & =17.7642^{\circ} \\
\alpha & =47.764^{\circ}
\end{aligned}
$$

$$
\mathbf{R}=1391 \mathrm{~N}<47.8^{\circ}<
$$

PROBLEM 2.17

Solve Problem 2.4 by trigonometry.
PROBLEM 2.4 Two forces \mathbf{P} and \mathbf{Q} are applied as shown at Point A of a hook support. Knowing that $P=60 \mathrm{lb}$ and $Q=25 \mathrm{lb}$, determine graphically the magnitude and direction of their resultant using (a) the parallelogram law, (b) the triangle rule.

SOLUTION

Using the triangle rule and the law of cosines:

$$
\begin{aligned}
20^{\circ}+35^{\circ}+\alpha= & 180^{\circ} \\
\alpha= & 125^{\circ} \\
R^{2}= & P^{2}+Q^{2}-2 P Q \cos \alpha \\
R^{2}= & (60 \mathrm{lb})^{2}+(25 \mathrm{lb})^{2} \\
& -2(60 \mathrm{lb})(25 \mathrm{lb}) \cos 125^{\circ} \\
R^{2}= & 3600+625+3000(0.5736) \\
R= & 77.108 \mathrm{lb}
\end{aligned}
$$

Using the law of sines:

$$
\begin{array}{rlr}
\frac{\sin \beta}{25 \mathrm{lb}} & =\frac{\sin 125^{\circ}}{77.108 \mathrm{lb}} & \underline{Q}=25 \mathrm{lb} \\
\beta & =15.402^{\circ} \\
70^{\circ}+\beta=85.402^{\circ} & \mathbf{R}=77.1 \mathrm{lb} \text { 又 } 85.4^{\circ}
\end{array}
$$

SOLUTION

Using the laws of cosines and sines:

$$
\begin{aligned}
P^{2} & =(120 \mathrm{~N})^{2}+(160 \mathrm{~N})^{2}-2(120 \mathrm{~N})(160 \mathrm{~N}) \cos 25^{\circ} \\
P & =72.096 \mathrm{~N}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\sin \alpha}{120 \mathrm{~N}} & =\frac{\sin 25^{\circ}}{72.096 \mathrm{~N}} \\
\sin \alpha & =0.70343 \\
\alpha & =44.703^{\circ}
\end{aligned}
$$

$$
\mathbf{P}=72.1 \mathrm{~N}{ }^{\prime} 44.7^{\circ}
$$

PROBLEM 2.19

Two structural members A and B are bolted to a bracket as shown. Knowing that both members are in compression and that the force is 10 kN in member A and 15 kN in member B, determine by trigonometry the magnitude and direction of the resultant of the forces applied to the bracket by members A and B.

SOLUTION

Using the force triangle and the laws of cosines and sines
We have

$$
\begin{aligned}
\gamma & =180^{\circ}-\left(40^{\circ}+20^{\circ}\right) \\
& =120^{\circ}
\end{aligned}
$$

Then

$$
\begin{aligned}
R^{2}= & (10 \mathrm{kN})^{2}+(15 \mathrm{kN})^{2} \\
& -2(10 \mathrm{kN})(15 \mathrm{kN}) \cos 120^{\circ} \\
= & 475 \mathrm{kN}^{2} \\
R= & 21.794 \mathrm{kN}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{15 \mathrm{kN}}{\sin \alpha} & =\frac{21.794 \mathrm{kN}}{\sin 120^{\circ}} \\
\sin \alpha & =\left(\frac{15 \mathrm{kN}}{21.794 \mathrm{kN}}\right) \sin 120^{\circ} \\
& =0.59605 \\
\alpha & =36.588^{\circ}
\end{aligned}
$$

Hence: $\quad \phi=\alpha+50^{\circ}=86.588^{\circ} \quad \mathbf{R}=21.8 \mathrm{kN}$ - 86.6°

PROBLEM 2.20

Two structural members A and B are bolted to a bracket as shown. Knowing that both members are in compression and that the force is 15 kN in member A and 10 kN in member B, determine by trigonometry the magnitude and direction of the resultant of the forces applied to the bracket by members A and B.

SOLUTION

Using the force triangle and the laws of cosines and sines:
We have

$$
\begin{aligned}
\gamma & =180^{\circ}-\left(40^{\circ}+20^{\circ}\right) \\
& =120^{\circ}
\end{aligned}
$$

Then

$$
\begin{aligned}
R^{2}= & (15 \mathrm{kN})^{2}+(10 \mathrm{kN})^{2} \\
& -2(15 \mathrm{kN})(10 \mathrm{kN}) \cos 120^{\circ} \\
= & 475 \mathrm{kN}^{2} \\
R= & 21.794 \mathrm{kN}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{10 \mathrm{kN}}{\sin \alpha} & =\frac{21.794 \mathrm{kN}}{\sin 120^{\circ}} \\
\sin \alpha & =\left(\frac{10 \mathrm{kN}}{21.794 \mathrm{kN}}\right) \sin 120^{\circ} \\
& =0.39737 \\
\alpha & =23.414
\end{aligned}
$$

Hence: $\quad \phi=\alpha+50^{\circ}=73.414 \quad \quad \mathbf{R}=21.8 \mathrm{kN} \Sigma^{\circ} 73.4^{\circ}$

PROBLEM 2.21

Determine the x and y components of each of the forces shown.

SOLUTION

Compute the following distances:

$$
\begin{aligned}
O A & =\sqrt{(84)^{2}+(80)^{2}} \\
& =116 \mathrm{in} . \\
O B & =\sqrt{(28)^{2}+(96)^{2}} \\
& =100 \mathrm{in} . \\
O C & =\sqrt{(48)^{2}+(90)^{2}} \\
& =102 \mathrm{in.}
\end{aligned}
$$

29-lb Force:

$$
\begin{aligned}
F_{x} & =+(29 \mathrm{lb}) \frac{84}{116} \\
F_{y} & =+(29 \mathrm{lb}) \frac{80}{116}
\end{aligned}
$$

$$
F_{x}=+21.0 \mathrm{lb}
$$

$$
F_{y}=+20.0 \mathrm{lb}
$$

50-lb Force:

51-lb Force:

$$
\begin{aligned}
& F_{x}=-(50 \mathrm{lb}) \frac{28}{100} \\
& F_{y}=+(50 \mathrm{lb}) \frac{96}{100}
\end{aligned}
$$

$$
F_{x}=-14.00 \mathrm{lb}
$$

$$
F_{y}=+48.0 \mathrm{lb}
$$

$$
\begin{aligned}
& F_{x}=+(51 \mathrm{lb}) \frac{48}{102} \\
& F_{y}=-(51 \mathrm{lb}) \frac{90}{102}
\end{aligned}
$$

$$
F_{x}=+24.0 \mathrm{lb}\langle
$$

$$
F_{y}=-45.0 \mathrm{lb}
$$

SOLUTION

Compute the following distances:

$$
\begin{aligned}
O A & =\sqrt{(600)^{2}+(800)^{2}} \\
& =1000 \mathrm{~mm} \\
O B & =\sqrt{(560)^{2}+(900)^{2}} \\
& =1060 \mathrm{~mm} \\
O C & =\sqrt{(480)^{2}+(900)^{2}} \\
& =1020 \mathrm{~mm}
\end{aligned}
$$

800-N Force:

$$
\begin{aligned}
& F_{x}=+(800 \mathrm{~N}) \frac{800}{1000} \\
& F_{y}=+(800 \mathrm{~N}) \frac{600}{1000}
\end{aligned}
$$

$$
F_{x}=+640 \mathrm{~N}\langle<
$$

$$
\begin{aligned}
& F_{x}=-(424 \mathrm{~N}) \frac{560}{1060} \\
& F_{y}=-(424 \mathrm{~N}) \frac{900}{1060}
\end{aligned}
$$

$$
F_{x}=-224 \mathrm{~N}\langle\langle
$$

$$
F_{y}=-360 \mathrm{~N}\langle\boldsymbol{<}
$$

408-N Force:

$$
\begin{aligned}
& F_{x}=+(408 \mathrm{~N}) \frac{480}{1020} \\
& F_{y}=-(408 \mathrm{~N}) \frac{900}{1020}
\end{aligned}
$$

$$
F_{x}=+192.0 \mathrm{~N} \boldsymbol{<}
$$

$$
F_{y}=-360 \mathrm{~N} \ll
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

350-N Force:	$F_{x}=+(350 \mathrm{~N}) \cos 25^{\circ}$	$F_{x}=+317 \mathrm{~N}$ <
	$F_{y}=+(350 \mathrm{~N}) \sin 25^{\circ}$	$F_{y}=+147.9 \mathrm{~N}$ <
800-N Force:	$F_{x}=+(800 \mathrm{~N}) \cos 70^{\circ}$	$F_{x}=+274 \mathrm{~N} \ll$
	$F_{y}=+(800 \mathrm{~N}) \sin 70^{\circ}$	$F_{y}=+752 \mathrm{~N}$ <
600-N Force:	$F_{x}=-(600 \mathrm{~N}) \cos 60^{\circ}$	$F_{x}=-300 \mathrm{~N}$ <
	$F_{y}=+(600 \mathrm{~N}) \sin 60^{\circ}$	$F_{y}=+520 \mathrm{~N}$ <

[^0]

SOLUTION

80-lb Force:

$$
\begin{aligned}
& F_{x}=+(80 \mathrm{lb}) \cos 30^{\circ} \\
& F_{y}=-(80 \mathrm{lb}) \sin 30^{\circ}
\end{aligned}
$$

120-lb Force:

$$
\begin{aligned}
& F_{x}=+(120 \mathrm{lb}) \cos 75^{\circ} \\
& F_{y}=-(120 \mathrm{lb}) \sin 75^{\circ}
\end{aligned}
$$

150-lb Force:

$$
F_{x}=-(150 \mathrm{lb}) \cos 40^{\circ}
$$

$$
F_{y}=-(150 \mathrm{lb}) \sin 40^{\circ}
$$

$$
\begin{gathered}
F_{x}=+69.3 \mathrm{lb} \\
F_{y}=-40.0 \mathrm{lb} \\
F_{x}=+31.1 \mathrm{lb} \\
F_{y}=-115.9 \mathrm{lb} \\
F_{x}=-114.9 \mathrm{lb} \\
F_{y}=-96.4 \mathrm{lb}
\end{gathered}
$$

SOLUTION

(a)

$$
\begin{aligned}
B C & =\sqrt{(650 \mathrm{~mm})^{2}+(720 \mathrm{~mm})^{2}} \\
& =970 \mathrm{~mm}
\end{aligned}
$$

$$
P_{x}=P\left(\frac{650}{970}\right)
$$

or

$$
\begin{aligned}
P & =P_{x}\left(\frac{970}{650}\right) \\
& =325 \mathrm{~N}\left(\frac{970}{650}\right) \\
& =485 \mathrm{~N}
\end{aligned}
$$

(b)

$$
\begin{aligned}
P_{y} & =P\left(\frac{720}{970}\right) \\
& =485 \mathrm{~N}\left(\frac{720}{970}\right) \\
& =360 \mathrm{~N}
\end{aligned}
$$

$$
P_{y}=970 \mathrm{~N} \ll
$$

SOLUTION

(a)

$$
\begin{aligned}
& P \sin 35^{\circ}=300 \mathrm{lb} \\
& P=\frac{300 \mathrm{lb}}{\sin 35^{\circ}} \\
& P=523 \mathrm{lb} \\
& 4
\end{aligned}
$$

(b) Vertical component

$$
\begin{array}{rlr}
P_{v} & =P \cos 35^{\circ} \\
& =(523 \mathrm{lb}) \cos 35^{\circ} & P_{v}=428 \mathrm{lb}
\end{array}
$$

PROBLEM 2.27

The hydraulic cylinder $B C$ exerts on member $A B$ a force \mathbf{P} directed along line $B C$. Knowing that \mathbf{P} must have a $600-\mathrm{N}$ component perpendicular to member $A B$, determine (a) the magnitude of the force $\mathbf{P},(b)$ its component along line $A B$.

SOLUTION

(a)

$$
\begin{aligned}
180^{\circ} & =45^{\circ}+\alpha+90^{\circ}+30^{\circ} \\
\alpha & =180^{\circ}-45^{\circ}-90^{\circ}-30^{\circ} \\
& =15^{\circ} \quad \times
\end{aligned}
$$

$$
\cos \alpha=\frac{P_{x}}{P}
$$

$$
P=\frac{P_{x}}{\cos \alpha}
$$

$$
=\frac{600 \mathrm{~N}}{\cos 15^{\circ}}
$$

$$
=621.17 \mathrm{~N}
$$

(b)

$$
\begin{aligned}
\tan \alpha & =\frac{P_{y}}{P_{x}} \\
P_{y} & =P_{x} \tan \alpha \\
& =(600 \mathrm{~N}) \tan 15^{\circ} \\
& =160.770 \mathrm{~N}
\end{aligned}
$$

$$
P_{y}=160.8 \mathrm{~N} \ll
$$

SOLUTION

(a)

$$
\begin{aligned}
P & =\frac{P_{y}}{\cos 55^{\circ}} \\
& =\frac{350 \mathrm{lb}}{\cos 55^{\circ}} \\
& =610.21 \mathrm{lb}
\end{aligned}
$$

(b)

$$
\begin{aligned}
P_{x} & =P \sin 55^{\circ} & \\
& =(610.21 \mathrm{lb}) \sin 55^{\circ} & \\
& =499.85 \mathrm{lb} & P_{x}=500 \mathrm{lb}
\end{aligned}
$$

PROBLEM 2.29

The hydraulic cylinder $B D$ exerts on member $A B C$ a force \mathbf{P} directed along line $B D$. Knowing that \mathbf{P} must have a $750-\mathrm{N}$ component perpendicular to member $A B C$, determine (a) the magnitude of the force $\mathbf{P},(b)$ its component parallel to $A B C$.

SOLUTION

(a)
(b)

$$
\begin{aligned}
P_{A B C} & =P \cos 20^{\circ} \\
& =(2192.9 \mathrm{~N}) \cos 20^{\circ} \quad P_{A B C}=2060 \mathrm{~N} \ll
\end{aligned}
$$

SOLUTION

(a)

$$
\begin{aligned}
P & =\frac{37}{12} P_{x} \\
& =\frac{37}{12}(720 \mathrm{~N}) \\
& =2220 \mathrm{~N}
\end{aligned}
$$

$$
P=2.22 \mathrm{kN} \measuredangle
$$

(b)

$$
\begin{aligned}
P_{y} & =\frac{35}{12} P_{x} \\
& =\frac{35}{12}(720 \mathrm{~N}) \\
& =2100 \mathrm{~N}
\end{aligned}
$$

$$
P_{y}=2.10 \mathrm{kN} \ll
$$

[^0]: Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

