
Solutions for Chapter 1 problems 
1.1 Displacement from a stable equilibrium position leads to a restoring force, i.e. a force that 
pushes the system back toward the equilibrium position.  An example is a pencil resting on a 
table.  If you pick up one end a little, and then release it, the pencil returns to its original position.  
Displacement from an unstable equilibrium position leads to force that pushes the system away 
from the equilibrium position.  An example is a pencil balanced on its point – a tiny force in any 
direction causes it to fall over. 

1.2  a) The electric field due to an infinite sheet of charge is 
02ε

σ
=sheetE , where σ  is the 

charge per unit area (units of C/m2).  Once the external electric field is applied, our cube has a 
sheet of positive charge on the left and negative charge on the right; each of these sheets has the 
same σ, and (within the cube) their fields add.  Therefore, the total field inside the cube is 

0ε
σ

=E .  For either of the sheets, the total charge has magnitude 

( ) ( )nexq 2
Volume
ChargeVolume =×= .  Therefore, the charge per area is xne=σ , so 
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b)  The force exerted on the electrons is 
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c)  The above could be written as kxF −= , with 
0

322

ε
enk = .  The angular frequency of 

oscillations is mk /=ω .  The total mass of the electrons is  
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1.3  The equations immediately preceding (1.3.4) are 
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ϕϕω , which is equation (1.3.4b). 

Equation (2) is equivalent to ϕ
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−= .  Squaring this, and adding to the square of (1) gives 
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x +=⇒=+=+ , which is equation (1.3.4a). 
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1.4  The potential energy of interest is is 
( ) xLxU βcos−= , where L and β are both > 

0.  This has a minimum at x = 0, and maxima 
at βπ /±=x .  Although this inverted cosine 
can be well-described by a parabola near the 
minimum, it flattens out as we move away 
from the minimum, as shown here. Since 

dxdUF /−=  , the flattening out 
corresponds to a decrease in the restoring force as we go to higher amplitudes, rather than the 
increase that is required to maintain constant period.  Therefore, the period increases at higher 
amplitudes. 
1.5 a)  For small amplitudes, the 4xβ  term is 

negligible compared to the 2xα term, so that 
2xU α≅ .  This is of the form 2

2
1 kxU = , so 

the effective spring constant is α2=k , and 
the angular frequency of oscillation is 

mmk /2/ αω == .  b)  Because β is 
positive, the exact potential energy 

42 xxU βα +=  eventually becomes steeper 

than the harmonic approximation 2xU α≅ , as shown here.  Since dxdUF /−= , the steeper 
slope corresponds to a stronger restoring force than what is required to keep the period constant.  
Therefore, the angular frequency increases at large amplitudes. 
1.6  Equation (1.3.3) states mk /0 =ω , which makes it clear that the angular frequency for a 
harmonic oscillator does not depend on the amplitude or initial conditions.  The seeming 
contradiction in the rewritten version of (1.3.4a) can be resolved by realizing that v0, x0, and A 
are interdependent, as shown by equations (1.3.4), leading to cancellations in the expression 
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=ω .  In other words, as we increase the amplitude A, the factors v0 and 2
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increase proportionally, so that their ratio remains constant.  As example, let’s choose o45=ϕ .  

From (1.3.4b), we have 
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000 xv ω−= .  Thus, the initial velocity v0 is proportional to the intial position x0.  Since 
( )ϕω += tAx cos , we have ϕcos0 Ax = , which becomes 2/0 Ax =  for our example.  Thus, 

the initial position x0 is proportional to the amplitude.  Since v0, x0, and A are proportional to 
each other, any change in one of them must be accompanied by a proportional change in the 

others; this means tha the ratio 
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1.7  We use the trigonometric identity ( ) BABABA sinsincoscoscos −=+ to obtain 
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( ) ϕωϕωϕω sinsincoscoscos 000 tAtAtA −=+ , 
This can equal tAtA 0201 sincos ωω +  if  

ϕcos1 AA =                                                                       (1) 
and ϕsin2 AA −= .                                                                     (2) 

Dividing (2) by (1) gives ( )12
1

12 /tan/tan AAAA −=⇒=− −ϕϕ , as required.  Taking the 

combination ( ) ( )22 12 +  gives 
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again as required. 
1.8   The acceleration of the platform is tAx 0

2
0 cosωω−= , which has a maximum value of 

2
0ωA .  Following the hint, the maximum amplitude for which the mass stays in contact with the 

platform corresponds to setting this maximum acceleration equal to g:  
( )22
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where f = 5 Hz.  Plugging in the numbers gives A = 0.993 cm, which rounds to 1 cm. 
1.9  We choose t = 0 such that the position of the finger is 

ωωωω AxtAxtAx =⇒−=⇒= maxsincos . 
The spacing between finger shadows is 
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In my experiment, I used an amplitude of "5=A  (i.e. peak-to-peak amplitude of 10”), and 
measured a shadow spacing of 2”.  Pluggin in the numbers gives Hz 63=TVf .  Since we’re told 
that the frequency is either 30 Hz or 60 Hz, it must be 60 Hz. 
 
1.10 Read the aside about the arctan function in section 1.3.  Explain why a more complete 

version of equation (1.3.4b) would be 
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1.10  From the aside about the arctan 
function in section 1.3, we understand 
that a calculator or symbolic algebra 
program returns a value from 0 to π/2 for 
the arctan of a positive argument, and a 
value from -π /2 to 0 for the arctan of a 
negative argument.  From (1.3.4b), we 

have ⎟⎟
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= −
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in quadrant 1 (shown in the figure here), 
we have 00 >x  and 00 <v  (because the 
vector representing z rotates 
counterclockwise as time progresses).  

Therefore, 0
0

0 >
−

x
v

ω
, and the ϕ returned 

by a calculator is between 0 and π /2; we can see from the figure that this is correct.  However, 

for quadrant 2, 00 <x  and 00 <v , so that 0
0

0 <
−

x
v

ω
.  Therefore, the ϕ returned by a calculator 

is between -π/2 and 0, whereas from the figure we see that ϕ should be between π/2 and π.  
Therefore, we must add π to the result from the calculator to get the correct value of ϕ.  For 

quadrant 3, 00 <x  and 00 >v , so that 0
0

0 >
−

x
v

ω
, and a calculator returns a result for ϕ between 

0 and π/2.  From the figure, we see that ϕ  should be between π  and 3π/2, so that we must add π 
to the result from the calculator.  (We could instead subtract π to get a result between -π/2 

and -π.)  Finally, for quadrant 4 00 >x  and 00 >v .  Therefore, 0
0

0 <
−

x
v

ω
 and a calculator 

returns a result for ϕ between 0 and -π/2, which is appropriate. 

1.11 a)  0
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b)  If x1 is a solution of this DEQ, then  
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Similarly, if x2 is a solution, then  

0
2
2

2 =+
x

GMx .                                                           (2) 

For x1 + x2 to be a solution, we would need 
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However, by forming the combination (1) + (2), we have 
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So, x1 + x2 is only a solution if 
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2

2
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+
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which is not generally true. 
1.12 a)  As charge is added to a capacitor (positive charge on one plate and negative on the 
other), it becomes increasingly difficult to add more charge, because it’s repelled by the charge 
already there.  Similarly, as we compress a spring, it becomes increasingly difficult to compress 
it further, because of Hooke’s Law: kxF −= .   

b)  From section 1.5, we have that q
C

qL 1
−= is isomorphic to kxxm −= .  Therefore, qL , the 

voltage across the inductor, is isomorphic to xm , which equals the total force.  Hence voltages 
are analogous to forces. 
 The capacitance is defined by CqVCVq /=⇔= .  This means that a capacitor with a 
large C can store a large charge q withotu developing much voltage.  The voltage developed 
when we apply charge to a capacitor is analogous to the force developed when we apply 
displacement to a spring (e.g. by compressing it); a large k results in a large force, whereas a 
large C results in a small V.  Therefore, in the isomorphism between the electrical and 
mechanical oscillators, it is reasonable that k is isomorphic to 1/C rather than C. 
1.13  From (1.6.1), the first-order Taylor series approximation is  

( ) ( )
0

00
xdx

dfaxfaxf +≈+ . 

When expanding around 00 =x , we can set xa =  and write 
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For our case,  
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Therefore, ( ) nxxf +≈1 , Q.E.D. 
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1.14 a), b) Figure is shown to the right.   
c)  Because the potential energy of the object 
cannot exceed its total energy, the particle is 
confined to the range shown.  Therefore, βx is 
small, so that 2/1cos 22xx ββ −≅ , and 

( ) 2/cos 22 xLLxLxU ββ +−≅−= .  This has the 

form 2
2
1const. kxU += , with the effective spring 

constant given by 2βLk = .  The constant term –
L in the potential energy does not affect the 
motion.  (One can always add any overall constant to the potential energy.)  Therefore, the 
motion is harmonic, with mLmk // βω == . 

1.15  Any complex number can be expressed in polar form.  Let 111
ϕieAC =  and 222

ϕieAC = .  

Then 
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1.16 a) 8.8 + i 2.2  (this equals 245.007.9 ie ).   
b)  6.1 ei 1.2 + 1.2 ei 1.7 = ( ) ( ) 88.606.27.1sin7.1cos2.12.1sin2.1cos1.6 iii +=+++  (This equals 

28.118.7 ie .)   
c)  (3.2 + i 6.7)(5.6 – i 4.5) 12.2307.4815.3052.3740.1492.17 iii +=++−=   (This equals 

448.034.53 ie .)   
d)  (6.1 ei 1.2)(1.2 ei 1.7) ( ) ( ) 9.27.12.1 32.72.11.6 ii ee =⋅= +   (This equals -7.11 + i 1.75) 
e) It’s easier to add with the Cartesian representation and to multiply with the polar 
representation. 
1.17 a)  z1 is a vector in the complex plane of length 8, with an 
angle of π/6 = 30o relative to the real axis.  z2  is a vector of length 

2  with an angle of 3π/4 = 135o relative to the real axis. These 
are shown here.  
b)  We use the result from section 1.8 that we can write a complex 

number either in polar form 
θiAez = , or in Cartesian form 

ibaz += , with a = A cos θ  and b = A sin θ.  Therefore, the real part of z1 is 
93.634cos8 61 ≅== πa , and the imaginary part of z1 is 4sin8 61 == πb .  Similarly, 

1cos2 4
3

2 −== πa  and 1sin2 4
3

2 == πb . 
c)  Using the result from part b, we have  

( ) ( ) ( ) 593.53134143421 iiiizz +≅+−=+−++=+ . 
Next, we use the result from section 1.8 that we can write a complex number either in polar form 

θiAez = , or in Cartesian form ibaz += , with   
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