Chapter 2 Numerical Methods with MATLAB

Linear Systems

2.1 In the photosynthesis reaction, water reacts with carbon dioxide to give glucose and oxygen. This reaction can be expressed as

$$
x_{1} \mathrm{CO}_{2}+x_{2} \mathrm{H}_{2} \mathrm{O} \rightarrow x_{3} \mathrm{O}_{2}+x_{4} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

Determine the values of coefficients x_{1}, x_{2}, x_{3}, and x_{4} to balance the equation. Is it possible to determine these values? If not, under what conditions can the solutions be found?

2.1(Solution)

Carbon balance: $x_{1}=6 x_{4}$, oxygen balance: $2 x_{1}+x_{2}=2 x_{3}+6 x_{4}$, hydrogen balance: $2 x_{2}=12 x_{4}$.
Rearrangement of these equations gives

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -6 \\
2 & 1 & -2 & -6 \\
0 & 2 & 0 & -12
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

We can use the backslash operator to get the solution:

$$
\gg \mathrm{x}=\mathrm{Alb}
$$

$\mathrm{x}=$
0
0
0
0

The given equations can be rewritten as

$$
x_{1}-6 x_{4}=0, x_{2}-6 x_{4}=0, x_{3}-6 x_{4}=0 \quad \Rightarrow \quad x_{1}=6 x_{4}, x_{2}=6 x_{4}, x_{3}=6 x_{4}
$$

Thus if we set $x_{4}=1$, we have $x_{1}=x_{2}=x_{3}=6$.
2.2 Four reactors are connected by pipes where directions of flow are depicted by means of arrows as shown in Figure P2.2 ${ }^{18}$. The flow rate of the key component is given by the volumetric flow rate Q (liter/sec) multiplied by the concentration $C(g /$ liter $)$ of the component. The incoming flow rate is assumed to be equal to the outgoing rate. Using the flow rates given below, calculate the concentration at each reactor:

$$
\begin{aligned}
& Q_{13}=75 \mathrm{liter} / \mathrm{sec}, \quad Q_{24}=20 \mathrm{liter} / \mathrm{sec}, \quad Q_{33}=60 \mathrm{liter} / \mathrm{sec}, \\
& Q_{21}=25 \text { liter } / \mathrm{sec}, \quad Q_{32}=45 \text { liter } / \mathrm{sec}, \quad Q_{43}=30 \text { liter } / \mathrm{sec}
\end{aligned}
$$

FIGURE P2.2

2.2(Solution)

Material balance for each reactor can be expressed as follows:
Reactor 1: $350+Q_{21} C_{2}=Q_{13} C_{1} \Rightarrow 350+25 C_{2}=75 C_{1} \Rightarrow 75 C_{1}-25 C_{2}=350$
Reactor 2: $Q_{32} C_{3}=Q_{21} C_{2}+Q_{24} C_{2} \Rightarrow 45 C_{3}=25 C_{2}+20 C_{2} \Rightarrow 45 C_{3}-45 C_{2}=0$
Reactor 3:

$$
\begin{aligned}
& \qquad Q_{13} C_{1}+Q_{43} C_{4}=Q_{32} C_{3}+Q_{33} C_{3} \Rightarrow 75 C_{1}+30 C_{4}=45 C_{3}+60 C_{3} \Rightarrow 75 C_{1}+30 C_{4}-105 C_{3}= \\
& 0 \\
& \text { Reactor 4: } 150+Q_{24} C_{2}=Q_{43} C_{4} \Rightarrow 150+20 C_{2}=30 C_{4} \Rightarrow 30 C_{4}-20 C_{2}=150 \\
& \text { These equations can be rearranged as } \\
& \quad 75 C_{1}-25 C_{2}=350, \quad-45 C_{2}+45 C_{3}=0, \quad 75 C_{1}-105 C_{3}+30 C_{4}=0, \quad-20 C_{2}+30 C_{4}=150
\end{aligned}
$$

The following commands produce desired outputs:

```
>> A=[[75 -25 0 0;0 -45 45 0;75 0-105 30;0 -20 0 30];b=[[350 0 0 150]'; C= A\b
C=
    7.4444
    8.3333
    8.3333
    10.5556
```

2.3 Paraxylene, styrene, toluene and benzene are to be separated with the array of distillation columns shown in Figure P2.3. ${ }^{19}$ Determine the molar flow rates ($\mathrm{kgmol} / \mathrm{min}$) of D_{1}, D_{2}, B_{1}, and B_{2}.

FIGURE P2.3

2.3(Solution)

Material balance for each component is given by:
Xylene: $0.07 D_{1}+0.18 B_{1}+0.15 D_{2}+0.24 B_{2}=0.15 \times 80=12$
Styrene: $0.04 D_{1}+0.24 B_{1}+0.1 D_{2}+0.65 B_{2}=0.25 \times 80=20$
Toluene : $0.54 D_{1}+0.42 B_{1}+0.54 D_{2}+0.1 B_{2}=0.4 \times 80=32$
Benzene : $0.35 D_{1}+0.16 B_{1}+0.21 D_{2}+0.01 B_{2}=0.2 \times 80=16$
These equations can be rearranged as $A x=b$, which can be solved by using the backslash operator:

```
>> A}=[\begin{array}{lllll}{0.07}&{0.18}&{0.15}&{0.24;0.04 0.24 0.1 0.65;\ldots}
    0.54 0.42 0.54 0.1; 0.35 0.16 0.21 0.01];
>>b}=[\begin{array}{lllll}{12}&{20}&{32}&{16}\end{array}]'; x=A\
x}
    30.0000
    20.0000
    10.0000
    20.0000
```

We can see that $D_{1}=30 \mathrm{kgmol} / \mathrm{min}, \mathrm{B}_{1}=20 \mathrm{kgmol} / \mathrm{min}, \mathrm{D}_{2}=10 \mathrm{kgmol} / \mathrm{min}$, and $\mathrm{B}_{2}=20 \mathrm{kgmol} / \mathrm{min}$.
2.4 Figure P 2.4 shows a flat square plate the sides of which are held at constant temperatures $\left(200^{\circ} \mathrm{C}\right.$ and $500^{\circ} \mathrm{C}$). Find the temperatures at inner nodes (i.e., $T_{7}-T_{9}, T_{12}-T_{14}, T_{17}-T_{19}$). The temperature at each inner node is assumed to be given by the average of temperatures of adjacent nodes.

FIGURE P2.4

2.4(Solution)

The energy balance for each inner node should be set. For example, the energy balance for node 7 can be written as

$$
q_{7}=\frac{k A}{\Delta x}\left(T_{6}-T_{7}\right)+\frac{k A}{\Delta x}\left(T_{8}-T_{7}\right)+\frac{k A}{\Delta y}\left(T_{12}-T_{7}\right)+\frac{k A}{\Delta y}\left(T_{2}-T_{7}\right)
$$

where $\Delta x=\Delta y$. Dividing both sides by kA and rearranging, we have

$$
\frac{q_{7}}{k A}=T_{8}+T_{12}-4 T_{7}+1000
$$

At steady-state, the heat $\operatorname{sink}\left(q_{7} / k A\right)$ becomes zero. Energy balance for each inner node can be represented as follows:

$$
\begin{aligned}
& T_{1}=T_{2}=T_{3}=T_{4}=T_{6}=T_{11}=T_{16}=500{ }^{\circ} \mathrm{C}, T_{10}=T_{15}=T_{20}=T_{25}=T_{24}=T_{23}=T_{22}=200{ }^{\circ} \mathrm{C} \\
& T_{5}=\frac{500+200}{2}=350{ }^{\circ} \mathrm{C}, \quad T_{21}=\frac{500+200}{2}=350{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Node 7: $-4 T_{7}+T_{8}+T_{12}=-1000$
Node 8: $-4 T_{8}+T_{7}+T_{13}+T_{9}=-500$
Node 9: $-4 T_{9}+T_{8}+T_{14}=-700$
Node 12: $-4 T_{12}+T_{13}+T_{17}+T_{7}=-500$
Node 13: $-4 T_{13}+T_{12}+T_{14}+T_{18}+T_{8}=0$
Node 14: $-4 T_{14}+T_{13}+T_{19}+T_{9}=-200$
Node 17: $-4 T_{17}+T_{18}+T_{12}=-700$
Node 18: $-4 T_{18}+T_{17}+T_{19}+T_{13}=-200$

Node 19: $-4 T_{19}+T_{18}+T_{14}=-400$
These equations can be rearranged in vector-matrix form as:

$$
\mathrm{Ax}=\mathrm{b} \Rightarrow\left[\begin{array}{ccccccccc}
-4 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & -4 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & -4 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & -4 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & -4 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & -4 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & -4 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4
\end{array}\right]\left[\begin{array}{c}
T_{7} \\
T_{8} \\
T_{9} \\
T_{12} \\
T_{13} \\
T_{14} \\
T_{17} \\
T_{18} \\
T_{19}
\end{array}\right]=\left[\begin{array}{c}
-1000 \\
-500 \\
-700 \\
-500 \\
0 \\
-200 \\
-700 \\
-200 \\
-400
\end{array}\right]
$$

We can use the backslash operator to find solutions:

```
>> A= [-4 1010000 0 0;1-41011000 0;011-400100 0;100-4 1010 0;...
    0101-41010;00101-4001;000100-4 10;0000101-4 1;...
    00000101-4];
>> b = [105 5 5 0 2 7 2 4 ]'*(-100); T = Alb
T=
    457.1429
    414.2857
    350.0000
    414.2857
    350.0000
    285.7143
    350.0000
    285.7143
    242.8571
```

2.5 Figure P 2.5 shows an ideal multi-component flash drum. The feed mixture of flow rate F consists of three isomers of xylene: o-xylene(1), m-xylene(2) and p-xylene(3). The feed contains mole fractions z_{i} of each component at temperature T_{f} and pressure P_{f}. In the flash drum, vapor-liquid equilibrium is achieved at T and P with a liquid flow rate L and vapor flow rate V. The vapor pressure of each component is assumed to be represented by Antoine equation given by

$$
\log _{10} P_{i}^{s a t}(m m H g)=A_{i}-\frac{B_{i}}{T\left({ }^{\circ} \mathrm{C}\right)+C_{i}}
$$

where A_{i}, B_{i} and C_{i} are the Antoine coefficients for species i. Table P2.5 lists the Antoine coefficients for three isomers of xylene. Assume that $P=760 \mathrm{mmHg}, F=1 \mathrm{~mol} / \mathrm{sec}$ and $L=0.2 \mathrm{~mol} / \mathrm{sec}$. Generate a plot showing the range of operating temperature T as a function of the mole fraction of oxylene $z_{1}\left(0.1 \leq z_{1} \leq 0.9\right) .{ }^{20}$

TABLE P2.5

Antoine Coefficients for Three Isomers of Xylene

Component	$\boldsymbol{A}_{\boldsymbol{i}}$	$\boldsymbol{B}_{\boldsymbol{i}}$	$\boldsymbol{C}_{\boldsymbol{i}}$	Boiling point $\left({ }^{\circ} \mathrm{C}\right)$
o-xylene(1)	6.99891	1474.679	213.69	144.4
m-xylene(2)	7.00908	1462.266	215.11	139.1
p-xylene(3)	6.99052	1453.430	215.31	138.4

FIGURE P2.5 Illustration of ideal multi-component flash drum.

2.5(Solution)

From mass balance and equilibrium relationship, we can get the following linear equations:

$$
x_{i} P_{i}^{\text {sat }}=y_{i} P \quad(i=1,2,3), \quad x_{1} L+y_{1} V=z_{1} F, \quad \sum_{i=1}^{3} x_{i}=\sum_{i=1}^{3} y_{i}=1
$$

Since $\mathrm{F}=1 \mathrm{~mol} / \mathrm{s}$ and $\mathrm{L}=0.2 \mathrm{~mol} / \mathrm{s}, \mathrm{V}=\mathrm{F}-\mathrm{L}=0.8 \mathrm{~mol} / \mathrm{s}$. Rearrangement of these equations gives the following linear system:

$$
\left[\begin{array}{cccccc}
P_{1}{ }^{\text {sat }} & 0 & 0 & -P & 0 & 0 \\
0 & P_{2}{ }^{\text {sat }} & 0 & 0 & -P & 0 \\
0 & 0 & P_{3}{ }^{\text {sat }} & 0 & 0 & -P \\
L & 0 & 0 & V & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
z_{1} F \\
1 \\
1
\end{array}\right]
$$

where $x_{4}=y_{1}, x_{5}=y_{2}$ and $x_{6}=y_{3}$. For $0.1 \leq z_{1} \leq 0.9$, the script flashrange.m uses the backslash operator (\backslash) to solve the linear system for $0.1 \leq z_{1} \leq 0.9$, checks the constraints $\sum_{i=1}^{3} x_{i}=\sum_{i=1}^{3} y_{i}=$ $\sum_{i=1}^{3} \mathrm{z}_{\mathrm{i}}=1$, determines the possible operating temperature range $\left(\mathrm{T}_{\min } \leq \mathrm{T} \leq \mathrm{T}_{\max }\right)$, and plots T vs. z .

```
% flashrange.m
clear all;
z = 0.1:0.01:0.9; n = length(z); % feed composition of o-xylene
Tl = zeros(1,n); Th = zeros(1,n);
for k=1:n
    [Tmin Tmax] = eqflash(z(k)); Tl(k) = Tmin; Th(k) = Tmax;
end
plot(z,Th,z,Tl,'--'), grid, xlabel('z_1'), ylabel('T(deg.C)')
legend('T_{max}','T_{min}','location','best')
function [Tmin Tmax] = eqflash(z)
nT = 500; Tl = 138.4; Th = 144.4; T = linspace(Tl,Th,nT); flnd = 0;
for k=1:nT
    [x,y,zv] = compxyz(T(k),z);
    if sum(x>0)== 3&& sum( }\textrm{y}>0)==3&& \operatorname{sum}(zv>0)==
        if flnd == 0,Tmin =T(k); flnd = 1; end
    else
        if flnd == 1, Tmax = T(k-1); return; end
    end
end
end
function [x,y,zv] = compxyz(T,z)
```

$\mathrm{A}=\left[\begin{array}{lll}6.99891 & 7.00908 & 6.99052\end{array}\right] ; \mathrm{B}=\left[\begin{array}{lll}1474.679 & 1462.266 & 1453.430\end{array}\right] ; \mathrm{C}=\left[\begin{array}{lll}213.69 & 215.11 & 215.31\end{array}\right] ;$
$\mathrm{F}=1 ; \mathrm{L}=0.2 ; \mathrm{V}=\mathrm{F}-\mathrm{L} ; \mathrm{P}=760 ; \%$ operating condition
$\mathrm{zv}(1)=\mathrm{z} ; \mathrm{Pv}=10 . \wedge(\mathrm{A}-\mathrm{B} . /(\mathrm{T}+\mathrm{C})) ; \%$ vapor pressure by Antoine eqn.
$\mathrm{Am}=[\mathrm{Pv}(1) 00-\mathrm{P} 00 ; 0 \operatorname{Pv}(2) 00-\mathrm{P} 0 ; 00 \mathrm{Pv}(3) 00-\mathrm{P} ; \mathrm{L} 00 \mathrm{~V} 00 ; \ldots$
$111000 ; 000111$]; \% coefficient matrix of linear system
$b=\left[\begin{array}{llllll}0 & 0 & 0 & z^{*} & F & 1\end{array}\right]$ '; \% right-hand side of linear system
$\mathrm{s}=\mathrm{Am} \backslash \mathrm{b} ; \mathrm{x}=\mathrm{s}(1: 3) ; \mathrm{y}=\mathrm{s}(4: 6)$;
for $k=2: 3, z v(k)=x(k) * L+y(k) * V$; end
end

FIGURE P2.5(S) Operating temperature range.
2.6 Consider the simplified process flow diagram shown in Figure P2.6. ${ }^{21}$ In the flow diagram, $m_{i}(i=$ $1,2, \cdots, 12$) represents flow rate of stream i. Assume that no mass accumulations and chemical reactions take place in the process units. The feed flow m_{1} is maintained at $100 \mathrm{~kg} / \mathrm{min}, m_{3}=0.7 m_{1}-$ $m_{2}, m_{6}=\left(m_{7}+m_{8}\right) / 3.2, m_{7}=0.84 m_{12}-m_{4}, m_{8}=0.2 m_{5}, m_{10}=0.2 m_{9}, m_{9}=0.85 m_{2}-m_{11}$, and $m_{12}=0.55 m_{1}-m_{9}$. It is required to determine the flow rates $m_{i}(i=2,3, \cdots, 12)$.

FIGURE P2.6 Simplified process flow diagram.

2.6(Solution)

Since there are no chemical reactions and mass accumulations, we can easily set up mass balance for each process unit as follows:

$$
\begin{gathered}
m_{2}+m_{3}+m_{4}+m_{5}=m_{1}=100, \quad m_{2}=m_{9}+m_{10}+m_{11}, \quad m_{5}=m_{6}+m_{7}+m_{8}, \\
m_{4}+m_{7}+m_{11}=m_{12}
\end{gathered}
$$

Rearrangement of the process specifications gives

$$
\begin{gathered}
m_{2}+m_{3}=0.7 m_{1}=70, \quad 3.2 m_{6}-m_{7}-m_{8}=0, \quad m_{7}+m_{4}-0.84 m_{12}=0, \\
m_{5}-5 m_{8}=0, \quad m_{9}-5 m_{10}=0, \quad 0.85 m_{2}-m_{9}-m_{11}=0, \quad m_{9}+m_{12}=0.55 m_{1}=55
\end{gathered}
$$

These linear equations can be rewritten in terms of matrix and vectors as follows:

$$
\left[\begin{array}{ccccccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & 0 \\
0 & 0 & 0 & 1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 3.2 & -1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -0.84 \\
0 & 0 & 0 & 1 & 0 & 0 & -5 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -5 & 0 & 0 \\
0.85 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
m_{2} \\
m_{3} \\
m_{4} \\
m_{5} \\
m_{6} \\
m_{7} \\
m_{8} \\
m_{9} \\
m_{10} \\
m_{11} \\
m_{12}
\end{array}\right]=\left[\begin{array}{c}
100 \\
0 \\
0 \\
0 \\
70 \\
0 \\
0 \\
0 \\
0 \\
0 \\
55
\end{array}\right]
$$

The script flowmass.m defines the linear system and uses the backslash operator (\backslash) to find the solution.

```
\% flowmass.m
\(\mathrm{A}=\operatorname{zeros}(11,11) ; \mathrm{A}(1,1)=1 ; \mathrm{A}(1,2)=1 ; \mathrm{A}(1,3)=1 ; \mathrm{A}(1,4)=1\);
\(\mathrm{A}(2,1)=1 ; \mathrm{A}(2,8)=-1 ; \mathrm{A}(2,9)=-1 ; \mathrm{A}(2,10)=-1\);
\(\mathrm{A}(3,4)=1 ; \mathrm{A}(3,5)=-1 ; \mathrm{A}(3,6)=-1 ; \mathrm{A}(3,7)=-1 ;\)
\(\mathrm{A}(4,3)=1 ; \mathrm{A}(4,6)=1 ; \mathrm{A}(4,10)=1 ; \mathrm{A}(4,11)=-1\);
\(\mathrm{A}(5,1)=1 ; \mathrm{A}(5,2)=1 ; \mathrm{A}(6,5)=3.2 ; \mathrm{A}(6,6)=-1 ; \mathrm{A}(6,7)=-1\);
\(\mathrm{A}(7,3)=1 ; \mathrm{A}(7,6)=1 ; \mathrm{A}(7,11)=-0.84 ;\)
\(\mathrm{A}(8,4)=1 ; \mathrm{A}(8,7)=-5 ; \mathrm{A}(9,8)=1 ; \mathrm{A}(9,9)=-5 ;\)
\(\mathrm{A}(10,1)=0.85 ; \mathrm{A}(10,8)=-1 ; \mathrm{A}(10,10)=-1 ; \mathrm{A}(11,8)=1 ; \mathrm{A}(11,11)=1\);
\(b=\operatorname{zeros}(11,1) ; b(1,1)=100 ; b(5,1)=70 ; b(11,1)=55 ; \%\) right-hand side of the linear system
\(\mathrm{m}=\mathrm{A} \backslash \mathrm{b} ; \mathrm{m}=\mathrm{m}^{\prime} \%\) use backslash operator to solve the linear system
>> flowmass
\(\mathrm{m}=\)
\(\begin{array}{lllllllllll}40.0 & 30.0 & 9.4565 & 20.5435 & 4.8913 & 11.5435 & 4.1087 & 30.0 & 6.0 & 4.0 & 25.0\end{array}\)
```

2.7 The process shown in Figure P2.7 consists of a reactor and a separator. The reactants A and B are fed into the reactor with flow rates A_{1} and B_{1}, respectively. The following two reactions are taking place in the reactor:

Reaction 1: $A+B \rightarrow C \quad$ (extent of reaction $=\xi_{1}$)
Reaction 2: $A+C \rightarrow D \quad$ (extent of reaction $=\xi_{2}$)
The intermediate product C produced by the Reaction 1 needs to be converted to the desired product D by Reaction 2. The single-pass conversion of the reactor is 90% with a 30% selectivity for Reaction 2. In the separator, the flow B_{2} is evenly split between the product stream (stream 3) and the recycle stream (stream 4), 65% of D and 85% of C fed into the separator are recycled through stream 4 , and 10% of flow A_{2} is lost to the product stream (stream 3). ${ }^{22}$
The feed flow rates are $A_{1}=10 \mathrm{~mol} / \mathrm{sec}$ and $B_{1}=20 \mathrm{~mol} / \mathrm{sec}$. Determine flow rates $A_{i}, B_{i}, C_{i}, D_{i}(i=2,3,4)$ and extents of reaction ξ_{1} and ξ_{2} for Reaction 1 and 2.

FIGURE P2.7 A process consisting of a reactor and a separator with recycle.

2.7(Solution)

The steady-state mass balances on the reactor are as follows:

$$
\begin{aligned}
& -A_{2}+A_{4}-\xi_{1}-\xi_{2}=-A_{1}, \quad-B_{2}+B_{4}-\xi_{1}=-B_{1} \\
& -C_{2}+C_{4}+\xi_{1}-\xi_{2}=0, \quad-D_{2}+D_{4}+\xi_{2}=0
\end{aligned}
$$

The mass balances for the separator are:

$$
A_{2}-A_{3}-A_{4}=0, \quad B_{2}-B_{3}-B_{4}=0, \quad C_{2}-C_{3}-C_{4}=0, \quad D_{2}-D_{3}-D_{4}=0
$$

From the conversion and selectivity of the reaction, we have

$$
-0.9 A_{4}+\xi_{1}+\xi_{2}=0.9 A_{1}, \quad 0.3 \xi_{1}-0.7 \xi_{2}=0
$$

The separator specifications give

$$
-0.65 D_{2}+D_{4}=0, \quad B_{3}-B_{4}=0, \quad 0.1 A_{2}-A_{3}=0, \quad 0.85 C_{2}-C_{4}=0
$$

Let $x_{1}=A_{2}, x_{2}=B_{2}, x_{3}=C_{2}, x_{4}=D_{2}, \quad x_{5}=A_{3}, x_{6}=B_{3}, x_{7}=C_{3}, \quad x_{8}=D_{3}, \quad x_{9}=A_{4}, \quad x_{10}=B_{4}$, $x_{11}=C_{4}, x_{12}=D_{4}, x_{13}=\xi_{1}$ and $x_{14}=\xi_{2}$. Then the mass balances can be represented in terms of matrix and vectors as follows:
$\left[\begin{array}{cccccccccccccccc}-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & -1 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -0.9 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.85 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -0.65 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0.1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\left.\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -0.3 & 0.7\end{array}\right]$

The script rxtsep defines the linear system and uses the backslash operator (\backslash) to find the solution.

```
\(\%\) rxtsep.m: reactor and separator with recycle
\(\mathrm{A}=\mathrm{zeros}(14,14) ; \mathrm{A}(1,1)=-1 ; \mathrm{A}(1,9)=1 ; \mathrm{A}(1,13)=-1 ; \mathrm{A}(1,14)=-1\);
\(\mathrm{A}(2,2)=-1 ; \mathrm{A}(2,10)=1 ; \mathrm{A}(2,13)=-1 ; \mathrm{A}(3,3)=-1 ; \mathrm{A}(3,11)=1 ; \mathrm{A}(3,13)=1 ; \mathrm{A}(3,14)=-1\);
\(\mathrm{A}(4,4)=-1 ; \mathrm{A}(4,12)=1 ; \mathrm{A}(4,14)=1 ; \mathrm{A}(5,1)=1 ; \mathrm{A}(5,5)=-1 ; \mathrm{A}(5,9)=-1 ;\)
\(\mathrm{A}(6,2)=1 ; \mathrm{A}(6,6)=-1 ; \mathrm{A}(6,10)=-1 ; \mathrm{A}(7,3)=1 ; \mathrm{A}(7,7)=-1 ; \mathrm{A}(7,11)=-1 ;\)
\(\mathrm{A}(8,4)=1 ; \mathrm{A}(8,8)=-1 ; \mathrm{A}(8,12)=-1 ; \mathrm{A}(9,9)=-0.9 ; \mathrm{A}(9,13)=1 ; \mathrm{A}(9,14)=1\);
\(\mathrm{A}(10,6)=1 ; \mathrm{A}(10,10)=-1 ; \mathrm{A}(11,3)=0.85 ; \mathrm{A}(11,11)=-1\);
\(\mathrm{A}(12,4)=-0.65 ; \mathrm{A}(12,12)=1 ; \mathrm{A}(13,1)=0.1 ; \mathrm{A}(13,5)=-1 ;\)
\(\mathrm{A}(14,13)=-0.3 ; \mathrm{A}(14,14)=0.7\);
\(\mathrm{b}=\operatorname{zeros}(14,1) ; \mathrm{b}(1,1)=-10 ; \mathrm{b}(2,1)=-20 ; \%\) right-hand side vector
\(\mathrm{x}=\mathrm{Alb} ; \mathrm{x}=\mathrm{x}\) ' \% solve the linear system using backslash operator
>> rxtsep
\(\mathrm{x}=\)
    10.989027 .538523 .73637 .62951 .098913 .76923 .56042 .67039 .890113 .769220 .1758
    4.95926 .23082 .6703
```

We can see that
$A_{2}=10.989, B_{2}=27.5385, C_{2}=23.7363, D_{2}=7.6295, A_{3}=1.0989, B_{3}=13.7692, C_{3}=3.5604$, $D_{3}=2.6703, A_{4}=9.8901, B_{4}=13.7692, C_{4}=20.1758, D_{4}=4.9592, \xi_{1}=6.2308$, and $\xi_{2}=$ 2.6703.

Nonlinear Equations

2.8 The volume fraction of red blood cells in blood is called hematocrit. The core region hematocrit $\left(H_{c}\right)$ is given by
$\frac{H_{c}}{H_{0}}=1+\frac{\left(1-\sigma^{2}\right)^{2}}{\sigma^{2}\left\{2\left(1-\sigma^{2}\right)+\sigma^{2}\left(1-\alpha H_{c}\right)\right\}}, \quad \sigma=1-\frac{\delta}{R}, \quad \alpha=0.07 \exp \left(2.49 H_{c}+\frac{1107}{T} e^{-1.69 H_{c}}\right)$
where
H_{0} is the hematocrit at inlet of blood vessel
$\delta(\mu m)$ is the thickness of the plasma layer
$R(\mu m)$ is the radius of the blood vessel
$T(K)$ is the temperature
Find H_{c} if $\delta=2.94 \mu m, R=16 \mu m, T=315 K$, and $H_{0}=0.45$.

2.8(Solution)

\% hemat.m: determination of volume fraction of red blood cells in blood (hematocrit)
clear all;
delta $=2.94 ; \mathrm{R}=16 ; \mathrm{T}=315 ; \mathrm{H} 0=0.45 ; \%$ data
$\mathrm{s}=1-$ delta $/ \mathrm{R} ; \mathrm{s} 2=\mathrm{s}^{\wedge} 2$;
$\mathrm{f}=@(\mathrm{x})\left[1+(1-\mathrm{s} 2)^{\wedge} 2 /\left(\mathrm{s} 2 *\left(2 *(1-\mathrm{s} 2)+\mathrm{s} 2 *\left(1-\mathrm{x} * 0.07 * \exp \left(2.49^{*} \mathrm{x}+1107^{*} \exp (-1.69 * \mathrm{x}) / \mathrm{T}\right)\right)\right)\right)-\mathrm{x} / \mathrm{H} 0\right]$;
$\mathrm{x} 0=\mathrm{H} 0 / 2 ; \mathrm{Hc}=\mathrm{fzero}(\mathrm{f}, \mathrm{x} 0)$
>> hemat
$\mathrm{Hc}=$
0.5296
2.9 The total number of unbound receptors present on a cell surface at equilibrium is given by

$$
\frac{R_{t}}{R_{e q}}=1+v\left(\frac{L_{0}}{K_{D}}\right)\left(1+K_{x} R_{e q}\right)^{f-1}
$$

where
R_{t} is the total number of receptors present on the cell surface
$R_{e q}$ is the equilibrium concentration of unbound receptors present on the cell surface
v is the number of binding sites
L_{0} is the ligand concentration
K_{D} is the dissociation constant
K_{x} is the crosslinking equilibrium constant
f is the total number of binding sites available for binding to a single cell
Determine the equilibrium concentration $R_{e q}$ using the data given below.
Data: $R_{t}=10692, v=17, L_{0}=2.1 \times 10^{-9} M, K_{D}=7.76 \times 10^{-5} M, K_{x}=5.82 \times 10^{-5}, f=9$.

2.9(Solution)

\% recept.m: determine the number of unbounded receptors
clear all;
$\mathrm{Rt}=10692 ; \mathrm{nu}=17 ; \mathrm{L} 0=2.1 \mathrm{e}-9 ; \mathrm{Kd}=7.76 \mathrm{e}-5 ; \mathrm{Kx}=5.82 \mathrm{e}-5 ; \mathrm{n}=9 ; \%$ data

$x 0=R t ; R e q=\operatorname{fzero}(f, x 0)$

```
>> recept
Req =
    1.0475e+04
```

2.10 The vapor pressure (mmHg) of n-pentane (A) and n-hexane (B) can be calculated from the Antoine equation ($\left.\mathrm{T}:{ }^{\circ} \mathrm{C}\right)^{23}$:

$$
\log P_{A}=6.85221-\frac{1064.63}{T+232.0}, \quad \log P_{B}=6.87776-\frac{1171.53}{T+224.366}
$$

(1) Calculate the bubble point temperature and equilibrium composition associated with a liquid mixture of $10 \mathrm{~mol} \% \mathrm{n}$-pentane and $90 \mathrm{~mol} \% n$-hexane at 1 atm .
(2) Repeat the calculations for liquid mixtures containing $0 \mathrm{~mol} \%$ up to $100 \mathrm{~mol} \%$ of n-pentane. Plot the bubble point temperature and $\mathrm{mol} \%$ of n-pentane in the vapor phase as a function of the $\mathrm{mol} \%$ in the liquid phase.

2.10(Solution)

At dew point, the sum of the partial pressure of each component should be equal to the total pressure (1 $\mathrm{atm}): x_{A} P_{A}+x_{B} P_{B}=760 \mathrm{mmHg}$

