Chapter 1 Engineering Economic Decisions

1.1

- Lease
- Deposit (typically one month worth of deposit) refundable when lease expires.
- Monthly lease payment
- Monthly maintenance fees
- Monthly utility expenses
- Buy
- Closing fees
- Down payment
- Monthly mortgage payments
- Property taxes
- Monthly utility fees
- Monthly maintenance fees
- Repair expenses
- Homeowners' association fee (if applicable)
1.2
- Option 1:
- Total amount at the end of two years: $\mathbf{\$ 1 , 1 5 0}$
- Option 2:
- Loan $\$ 500$ to a friend for one year and receive $\$ 600$
- Deposit $\$ 500$ (left over) in a back at 3% for two years:

$$
\$ 500(1.03)(1.03)=\$ 530.45
$$

- Deposit $\$ 600$ received from your friend at 3% per year for a year:

$$
\$ 600(1.03)=\$ 618
$$

Total amount at the end of two years:
$\$ 530.45+\$ 618=\mathbf{\$ 1 , 1 4 8 . 4 5}$
These two options are about the same. But considering the trustworthiness, you could go with Option 2.

Chapter 2 Accounting Information for Engineering Economic Decisions

2.1
(2) Income statement; (1) balance sheet; (3) cash flow statement; (4) operating activities; (5) investing activities, and (6) financing activities; (7) capital account (paid-in capital)
2.2
(7), (8), (1), (11), (3), (9)
2.3
(a)

- Current assets $=\$ 150,000+\$ 200,000+\$ 150,000+\$ 50,000+\$ 30,000$

$$
=\$ 580,000
$$

- Current liabilities $=\$ 50,000+\$ 100,000+\$ 80,000=\$ 230,000$
- Working capital $=\$ 580,000-\$ 230,000=\$ 350,000$
- Shareholder's equity $=\$ 100,000+\$ 150,000+\$ 150,000+\$ 70,000$

$$
=\$ 470,000
$$

(b) $\mathrm{EPS}=\$ 500,000 / 10,000=\$ 50$ per share
(c) Par value $=\$ 15$; capital surplus $=\$ 150,000 / 10,000=\$ 15$

Market price $=\$ 15+\$ 15=\$ 30$ per share
2.4
(a) Shareholder's equity in $2021=\$ 700-\$ 510=\$ 190(\mathrm{M})$

Shareholder's equity in 2022 $=\$ 900-\$ 640=\$ 260(\mathrm{M})$
(b) Net working capital in 2021 $=\$ 100-\$ 60=\$ 40(\mathrm{M})$

Net working capital in 2022 $=\$ 200-\$ 90=\$ 110(\mathrm{M})$
(c) The income taxes in year 2022:

$$
(\$ 2,350-\$ 1,130-\$ 420-\$ 210) * 0.35=\$ 206.5(\mathrm{M})
$$

(d) $\$ 383.50+\$ 420=\$ 803.50(\mathrm{M})$
$($ Cash from Operating activities $=$ Net income + Depreciation $)$

Contemporary Engineering Economics, $7^{\text {th }}$ ed. ©2023
2.5 (a)

	Company A	Company B
ROE (= Net income/Equity)	26.03%	22.29%
ROA (= Net income + interest expense (1-tax rate)/Average total assets)	17.34%	12.59%

(b) Company A has performed better in terms of profitability.
(c) If two companies were merged, the impact on the results of ROE could be positive under the situation where the Company A leads the acquisition using a stock swap instead of issuing new stocks for M\&A cost. If Company A uses a stock swap, the stock value wouldn't be decreased in terms of scarcity.
2.6

Inventory turnover ratio (2021) = Sales/Average inventory balance

$$
\begin{aligned}
& =\$ 3,776,395 /(\$ 202,794+\$ 231,313) \times 0.5 \\
& =17.4 \text { times }
\end{aligned}
$$

Inventory turnover ratio $(2022)=15.6$ times
This ratio shows how many times the inventory of a firm is sold and replaced over a specific period. From the data, Metronix was holding more stocks of inventory than last year; having more inventories on stock is unproductive.
2.7 (b)
2.8 (b)
2.9 (d)
2.10

Given Olson's EPS = \$8 per share; Cash dividend = \$4 per share; Book value per share $=\$ 80$; Changes in the retained earnings $=\$ 24$ million; Total debt $=\$ 240$ million; Find debt ratio $=$ total debt/total assets

- $\quad \mathrm{EPS}=\frac{\text { Net Income }}{\mathrm{X}}=\$ 8$

Where $\mathrm{X}=$ the number of outstanding shares

- Book value $=\frac{\text { Total shareholders' equity }}{\mathrm{X}}=\$ 80$

Contemporary Engineering Economics, $7^{\text {th }}$ ed. ©2023

- Retained earnings $=$ Net income - Cash dividend; Net income $=8 \mathrm{X}$ from EPS relationship and the total cash dividend $=4 \mathrm{X}$, so we rewrite $8 \mathrm{X}-4 \mathrm{X}=\$ 24$ million, or $\mathrm{X}=6$ million shares
- From the book value per share, we know that the total shareholders' equity $=80 \mathrm{X}$, or $\$ 480$ million; Total assets $=$ Total liabilities + Total shareholders' equity $=\$ 240$ million $+\$ 480$ million $=\$ 720$ million
- Debt ratio $=\$ 240$ million $/ \$ 720$ million $=0.33$
2.11
(a) Debt ratio (= Total debt/Total assets)
$=\$ 19,483,000 / \$ 38,599,000=50.48 \%$
(b) Times-interest-earned ratio (= EBIT/Interest expense)
$=$ Not defined
(c) Current ratio (= Current assets/Current liabilities)
$=29,021,000 / 19,483,000=1.49$
(d) Quick (acid test) ratio (= (Current assets - Inventories)/Current liabilities))
$=(29,021,000-1,301,000) / 19,483,000=1.42$
(d) Inventory-turnover ratio (= Sales/Avg. inventory balance)
$=61,494,000 /((1,301,000+1,051,000) \times 0.5)=52.29$
(f) Days-sales-outstanding ratio (= Receivables/ (Annual sales/365))
$=10,136,000 /(61,494,000 / 365)=60.16$
(g) Total-assets-turnover ratio (= Sales/Total assets)
$=61,494,000 / 38,599,000=1.59$
(h) Profit margin on sales (= Net income available to common stockholders/Sales)
$=2,635,000 / 61,494,000=4.28 \%$
(i) Return on total assets (= (Net income + interest expense (1-tax rate) $) /$ Avg. total assets)

Contemporary Engineering Economics, $7^{\text {th }}$ ed. ©2023

$$
=2,635,000 /((38,599,000+33,652,000) \times 0.5)=7.29 \%
$$

(j) Return on common equity ($=$ (Net income available to common stockholders)/Avg. common equity)

$$
=2,635,000 /((7,766,000+5,641,000) \times 0.5)=39.31 \%
$$

(k) Price/earnings ratio (= Price per share/Earnings per share)

$$
=13.47 /(3,350,000 / 1,944,000)=7.82
$$

(l) Book value per share (= (Total stockholders' equity-Preferred stock)/Shares outstanding)

$$
=7,766,000 / 1,944,000=\$ 3.99
$$

To make an informed analysis of the firm's financial health, we need to calculate the various financial ratios of the firm's competitors along with the S\&P 500.

2.12

Income Statement:

A	B	C	D	E	F
$\$ 900,000$	$\$ 585,000$	$\$ 315,000$	$\$ 270,000$	$\$ 108,000$	$\$ 162,000$

Balance Sheet:

(0)	(1)	(2)	(3)	(4)	(5)
$\$ 160,000$	$\$ 120,000$	$\$ 320,000$	$\$ 600,000$	$\$ 900,000$	$\$ 1,500,000$

(6)	(7)	8	(9)	(10)
$\$ 450,000$	$\$ 700,000$	$\$ 100,000$	$\$ 700,000$	$\$ 800,000$

- From Current ratio

Total current assets $=2.4 \times \$ 250,000=\$ 600,000$
Plant and equipment, net $=\$ 1,500,000-\$ 600,000=\$ 900,000$

- From Quick ratio

Contemporary Engineering Economics, $7^{\text {th }}$ ed. ©2023

Inventory $=\$ 600,000-(1.12 \times \$ 250,000)=\$ 320,000$

- From Inventory Turnover

Net Revenue $=((\$ 320,000+\$ 280,000) / 2) \times 6.0=\$ 1,800,000$
Cost of goods sold $=\$ 1,800,000-\$ 900,000=\$ 900,000------$ A

- From DSO

Cash $=(3)-(2)+(1))=\$ 160,000$
- From interest expense of income statement

Bond $=\$ 450,000$
$250,000+(6)=\$ 700,000$

- From Debt-to-Equity ratio

Total Equity (10) $=\$ 700,000 \div 0.875=\$ 800,000-----------$ (10)
Total assets or Total liabilities and equity $=(7)+(10)=\$ 1,500,000 \ldots-\ldots$ - 5

- From Return on total assets

Net income $\mathrm{F}=14 \% \times(\$ 1,350,000)-(\$ 45,000)(0.6)=\$ 162,000$

- From $\mathrm{F}, \mathrm{D}=\mathrm{F} \div 0.6=\$ 270,000$,

$$
\mathrm{E}=\mathrm{D} \times(0.4)=\$ 108,000
$$

$$
\mathrm{C}=\mathrm{D}+45,000=\$ 315,000
$$

$$
\mathrm{B}=\$ 900,000-\mathrm{C}=\$ 585,000
$$

- From EPS

Stock Outstanding $=\mathrm{F} \div 4.05=40,000$ shares
Common stock $=\$ 2.50 \times 40,000=\$ 100,000$
Retained Earnings $=(10)-8=\$ 700,000$
2.13

- Accounts receivable $=\mathrm{DSO} \times$ Sales $/ 365=45$ days $\times(\$ 1,200) / 365$ days $)=$ \$147.945
- Current assets $=($ Cash and marketable securities $)+($ Accounts receivable $)+$ Inventory $=\$ 427.945$
- Long-term debt = (Total assets) $-($ Current liabilities $)-($ Common equities $)$
$=\$ 427.945+\$ 280-$ (current assets/current ratio) - \$500
$=(\$ 207.945)-(427.945 / 3.2)$
$=\$ 74.212$
- Total assets turnover $=$ Sales/Total assets $=\$ 1,200 /(\$ 427.945+\$ 280)=$ 1.695 times

Contemporary Engineering Economics, $7^{\text {th }}$ ed. ©2023
2.14
(a) Find Tiger's accounts receivable.

$$
D S O=91.25=\frac{A R}{200,000 / 365} \Rightarrow A R=\$ 50,000
$$

(b) Determine the amount of current liabilities.

$$
\begin{aligned}
& C A=\text { Cash }+ \text { Inventory }+A R=\$ 10,000+\$ 150,000+\$ 50,000=\$ 210,000 \\
& \text { Current Ratio }=4.2=\frac{\$ 210,000}{\text { Current Liabilities }} \Rightarrow \text { Current Liabilities }=\$ 50,000
\end{aligned}
$$

(c) Calculate the amount of the long-term debt.

Total Asset $=$ Current Asset + Fixed Asset $=\$ 210,000+\$ 90,000=\$ 300,000$
$\$ 300,000=(\$ 50,000+$ Long term debt $)+\$ 200,000$
\Rightarrow Long term debt $=\$ 50,000$
(d) Calculate the Return on Common Equity.
$R O E=\frac{\text { net income }}{\text { equity }}=\frac{\$ 15,000}{\$ 200,000}=0.075 \Rightarrow 7.5 \%$
2.15
(a) Find Fisher's accounts receivable.
$D S O=\frac{A R}{1,200 / 365} \rightarrow A R=147.95 M$
(b) Calculate the amount of current assets.
$C A=\operatorname{cash}+\operatorname{Inv} .+A R=100+180+147.95=427.95 M$
(c) Determine the amount of current liabilities.
$C R=3.2=\frac{C A}{C L}=\frac{427.95}{C L} \rightarrow C L=133.73 \mathrm{M}$
(d) Determine the amount of total assets.
$T A=C A+F A=427.95+280=707.95 M$

Contemporary Engineering Economics, $7^{\text {th }}$ ed. ©2023
(e) Calculate the amount of the long-term debt.
$707.95=(133.73+L B)+500 \rightarrow L B=\mathbf{7 4 . 2 2 M}$
(f) Calculate the profit margin.
profit margin $=\frac{\text { net income }}{\text { sales }}=\frac{358}{1,200}=\mathbf{2 9 . 8 3} \%$
(g) Calculate the Return on Common Equity
$R O E=\frac{\text { net income }}{\text { equity }}=\frac{358}{500}=\mathbf{7 1 . 6} \%$

Short Case Studies with Excel

ST2.1
Not provided
ST2.2
(a) Working capital $=$ Current assets - Current liabilities

Working capital requirements $=$ Changes in current assets - Changes in current liabilities:

$$
\text { WC req. }=(+\$ 100,000-\$ 20,000)-(+\$ 30,000-\$ 40,000)=\$ 90,000
$$

indicating that additional financing is needed to fund the increase in current assets.
(b) Taxable income $=\$ 1,500,000-\$ 650,000-\$ 150,000-\$ 20,000=\$ 680,000$
(c) Net income $=\$ 680,000-\$ 272,000=\$ 408,000$
(d) Net cash flow:

- Operating activities $=$ net income + depreciation $-\mathrm{WC}=\$ 408,000+$ $\$ 200,000-\$ 90,000=\$ 518,000$
- Investing activities $=$ equipment purchase $=(\$ 400,000)$
- Financing activities $=$ borrowed fund $=\$ 200,000$
- Net cash flow $=\$ 518,000-\$ 400,000+\$ 200,000=\$ 318,000$

ST2.3
Not provided
(Visit the websites and get the most recent financial statements available)

Contemporary Engineering Economics, $7^{\text {th }}$ ed. ©2023

Chapter 3: Interest Rate and Economic Equivalence

Types of Interest

$3.1 \quad I=(i P) N=(0.06)(\$ 2,000)(5)=\$ 600$
3.2

- Simple interest:

$$
\begin{aligned}
& \$ 20,000=\$ 10,000(1+0.075 \mathrm{~N}) \\
& (1+0.075 \mathrm{~N})=2 \\
& N=\frac{1}{0.075}=13.33 \approx 14 \text { years }
\end{aligned}
$$

- Compound interest:

$$
\begin{aligned}
& \$ 20,000=\$ 10,000(1+0.07)^{N} \\
& (1+0.07)^{N}=2 \\
& N=10.24 \approx 1 \text { years }
\end{aligned}
$$

3.3

- Compound interest:

$$
\begin{aligned}
F & =\$ 1,000(1+0.065)^{5} \\
& =\$ 1,370.09
\end{aligned}
$$

- Simple interest:

$$
\begin{aligned}
F & =\$ 1,000(1+0.068(5)) \\
& =\$ 1,340
\end{aligned}
$$

The compound interest option is better.
3.4

- Simple interest (John):

$$
I=i P N=(0.1)(\$ 1,000)(5)=\$ 500
$$

- Compound interest (Susan):

Contemporary Engineering Economics, $7^{\text {th }}$ ed. ©2023

$$
\begin{aligned}
I & =P\left[(1+i)^{N}-1\right]=\$ 1,000\left[(1+.095)^{5}-1\right] \\
& =\$ 574.24
\end{aligned}
$$

- Susan's balance will be greater by $\$ 74$ (or $\$ 74.24$ to be exact)
3.5
- Simple interest:

$$
I=i P N=(0.10)(\$ 10,000)(5)=\$ 5,000
$$

- Compound interest:

$$
I=P\left[(1+i)^{N}-1\right]=\$ 10,000(1.6105-1)=\$ 6,105
$$

3.6

- Option 1: Compound interest with 8% :

$$
F=\$ 4,500(1+0.085)^{5}=\$ 5,000(1.4693)=\$ 6,766.45
$$

- Option 2: Simple interest with 9.5\%:

$$
\$ 4,500(1+0.095 \times 5)=\$ 5,000(1.475)=\$ 6,637.50
$$

\therefore Option 1 is still better.
3.7

End of Year	Principal Repayment	Interest payment	Remaining Balance
0			$\$ 15,000.00$
1	$\$ 4,620.50$	$\$ 1,200.00$	$\$ 10,379.50$
2	$\$ 4,990.14$	$\$ 830.36$	$\$ 5,389.36$
3	$\$ 5,389.35$	$\$ 431.15$	$\$ 0$

Equivalence Concept

3.8

$$
P=\$ 22,000(P / F, 5 \%, 5)=\$ 22,000(0.7835)=\$ 17,237.58
$$

3.9

$$
F=\$ 30,000(F / P, 9 \%, 3)=\$ 30,000(1.295)=\$ 38,850.87
$$

Contemporary Engineering Economics, $7^{\text {th }}$ ed. ©2023
3.10

$$
F=\$ 100(F / P, 10 \%, 10)+\$ 200(F / P, 10 \%, 8)=\$ 688
$$

3.11

$$
\begin{aligned}
\$ 1,000(F / P, i, 2) & =\$ 1,200 \\
\$ 1,000(1+i)^{2} & =\$ 1,200 \\
i & =\sqrt{1.2}-1 \\
i & =9.54 \%
\end{aligned}
$$

Single Payments (Use of $\boldsymbol{F} / \boldsymbol{P}$ or $\boldsymbol{P} / \boldsymbol{F}$ Factors)

3.12

$$
i=10.5 \%, \text { two-year discount rate is }(1+0.105)^{2}=1.221 \text { (or } 22.1 \% \text {) }
$$

3.13

$$
\begin{aligned}
F & =2 P=P(1+0.06)^{N} \\
\log 2 & =N \log 1.06 \\
N & =11.896 \text { years (or } 12 \text { years) }
\end{aligned}
$$

3.14

$$
F=\$ 1(1.08)^{394}=\$ 14,755,694,730,611
$$

3.15

$$
P=\$ 450,000(P / F, 5 \%, 5)=450,000(0.7835)=\$ 352,575
$$

3.16

$$
F=\$ 250,000(F / P, 6 \%, 10)=\$ 447,712
$$

3.17
(a) $F=\$ 5,000(F / P, 7 \%, 5)=\$ 7,013$
(b) $F=\$ 7,250(F / P, 9 \%, 15)=\$ 26,408$
(c) $F=\$ 9,000(F / P, 6 \%, 33)=\$ 61,565$
(d) $F=\$ 12,000(F / P, 5.5 \%, 8)=\$ 18,416$

Contemporary Engineering Economics, $7^{\text {th }}$ ed. ©2023
3.18

$$
P=\$ 300,000(P / F, 8 \%, 10)=\$ 138,958
$$

3.19
(a) $P=\$ 25,500(P / F, 12 \%, 8)=\$ 10,299$
(b) $P=\$ 58,000(P / F, 4 \%, 12)=\$ 36,227$
(c) $P=\$ 25,000(P / F, 6 \%, 9)=\$ 14,797$
(d) $P=\$ 35,000(P / F, 9 \%, 4)=\$ 24,795$
3.20
(a) $P=\$ 12,000(P / F, 13 \%, 4)=\$ 7,360$
(b) $F=\$ 30,000(F / P, 13 \%, 5)=\$ 55,273$
3.21

$$
\begin{aligned}
& F=3 P=P(1+0.08)^{N} \\
& \log 3=N \log (1.08) \\
& N=14.27 \rightarrow 15 \text { years }
\end{aligned}
$$

3.22

$$
F=2 P=P(1+0.06)^{N}
$$

- $\quad \log 2=N \log (1.06)$

$$
N=11.90 \text { years } \simeq 12 \text { years }
$$

- Rule of 72: $72 / 6=12$ years
3.23

$$
\begin{aligned}
(\$ 16.50)(100)(F / P, i, 44) & =\$ 77.50(204,800) \\
(F / P, i, 44) & =\frac{\$ 15,872,000}{\$ 1,650}=9,619.39 \\
i & =23.18 \%
\end{aligned}
$$

