Student name: \qquad

TRUE/FALSE - Write ' T ' if the statement is true and ' F ' if the statement is false.

1) The mass of a neutron is equal to the mass of a proton plus the mass of an electron.
© true
© false
2) All neutral atoms of tin have 50 protons and 50 electrons.
© true
© false
3) Copper (Cu) is a transition metal.
© true
© false
4) Lead (Pb) is a main group element.
© true
© false
5) Almost all the mass of an atom is concentrated in the nucleus.
© true
© false
6) When a beam of alpha particles passes between two electrically charged plates, the beam is deflected toward the positive plate.
© true
© false
7) J. J. Thomson suggested the term "radioactivity" to describe the spontaneous emission of particles and/or radiation.
© true
© false
8) The energy of a photon is directly proportional to the wavelength of the radiation.
© true
© false
9) The frequency of a photon is inversely proportional to the wavelength of the radiation.
© true
© false
10) The principal quantum number designates the size of the orbital.
© true
© false
11) The magnetic quantum number designates the shape of the atomic orbital.
© true
© false
12) If $n=2$ then $l=0,-1$, and 1 .
© true
© false
13) An electron in a $3 p$ orbital could have a value of 2 for its angular momentum quantum number (l).
© true
© false
14) Each shell (principal energy level) of quantum number n contains n subshells.
© true
© false
15) For all atoms of the same element, the $2 s$ orbital is larger than the $1 s$ orbital.
© true
© false
16) The periodic table was first arranged according to increasing atomic masses.
© true
© false
17) Coulomb's law is the attractive force (F) between two oppositely charged particles (Q_{I} and Q_{2}). It is directly proportional to the product of the charges and inversely proportional to the distance (d) between the objects cubed.
© true
© false
18) In Mendeleev's version of the periodic table, the elements were arranged in order of increasing atomic number.
© true
© false
19) Moseley's measurements of nuclear charges of the elements provided the basis for arranging the elements of the periodic table in order of increasing atomic number.
© true
○ false
20) In neutral atoms, the $3 d$ orbitals have higher energy than the $4 s$ orbitals.
© true
© false
21) The electron configuration of atomic argon is the same as the chloride ion $\left(\mathrm{Cl}^{-}\right)$.
© true
© false
22) Elements in which the outermost electron has the same principal quantum number, n, show similar chemical properties.
© true
© false
23) Electrons will not pair in degenerate orbitals if an empty orbital is available and, according to Hund's rule, the degenerate orbitals must all contain one electron before any of them can contain two electrons.
© true
© false
24) According to the Aufbau principle, the most stable arrangement of electrons places them in degenerate orbitals.
© true
© false
25) The electron configuration for chlorine is $[\mathrm{Ne}] 3 s^{2} 3 p^{5}$.
© true
© false
26) The radii of ions are always smaller than the radii of the corresponding atoms of the same element.
© true
© false
27) Atomic size decreases across a period due to an increase in the effective nuclear charge, $Z_{\text {eff }}$.
© true
© false
28) Ionic compounds tend to form between metals and nonmetals when electrons are transferred from an element with high ionization energy (metal) to an element with a low electron affinity (nonmetal).
© true
© false
29) Ionic compounds may carry a net positive or net negative charge.
© true
© false
30) When an alkali metal combines with a nonmetal, a covalent bond is normally formed.
© true
© false
31) The empirical formula of $\mathrm{C}_{6} \mathrm{H}_{6}$ is CH .
© true
© false
32) The empirical formula is the simplest whole number ratio of atoms representing a chemical formula of a molecule.
© true
© false
33) Many compounds can be represented with the same empirical formula.
© true
© false
34) There is only one distinct empirical formula for each compound that exists.
© true
© false
35) The molecular formula is a whole number multiple of the empirical formula.
© true
© false
36) Ionic compounds tend to form between metals and nonmetals when electrons are transferred from an element with high ionization energy (metal) to an element with a low electron affinity (nonmetal).
© true
© false
37) Lewis theorized the octet rule to describe chemical bonding where atoms lose, gain, or share electrons in order to achieve a noble gas configuration.
© true
© false
38) Only valence electrons are shown in the Lewis structure held together by covalent bonds.
© true
© false
39) A double bond cannot exist between a carbon atom and an oxygen atom.
© true
© false
40) A triple bond cannot exist between a carbon atom and a hydrogen atom.
© true
© false
41) Unshared electrons are always shown in pairs around an atom.
© true
© false
42) The octet rule works best for elements in the 3rd period of the periodic table.
© true
© false
43) Multiple bonds are longer than single bonds.
© true
© false
44) Single bonds are stronger than multiple bonds.
© true
© false
45) Octane, $\mathrm{C}_{8} \mathrm{H}_{18}$, boils at $125^{\circ} \mathrm{C}$, whereas water boils at $100^{\circ} \mathrm{C}$. This information suggests that the dispersion forces in nonpolar octane molecules are stronger than the dispersion forces and hydrogen bonding in water.
© true
© false
46) The energy of a hydrogen bond is greater than that of a typical covalent bond.
© true
© false
47) Only molecules which do not have dipole moments can experience dispersion forces.
© true
© false
48) To correctly determine the molecular shape of a molecule requires that you first draw the Lewis structure for the molecule.
© true
© false
49) According to molecular orbital theory, all diatomic molecules with an even number of electrons are diamagnetic.
© true
© false
50) In the valence bond treatment, ar bond is formed when two p orbitals overlap side to side.
© true
© false
51) In the valence bond treatment, overlap of an s orbital on one atom with a $s p^{3}$ orbital on another atom gives rise to a σ bond.
© true
© false
52) Atoms of period 3 and beyond can undergo $s p^{3} d^{2}$ hybridization, but atoms of period 2 cannot.
© true
© false
53) The angles between $s p^{2}$ hybrid orbitals are 109.5°.
© true
© false
54) The bond angle for a $s p$ hybrid orbital is smaller than the bond angle for an $s p^{2}$ hybrid orbital.
© true
© false
55) To make a $s p^{3}$ hybrid orbital, one s atomic orbital is mixed with three p atomic orbitals.
© true
© false
56) A molecule that contains polar bonds will always have a dipole moment.
© true
© false
57) According to the VSEPR model, a molecule with the general formula $A B_{3}$ possessing two lone pairs on the central atom has a trigonal planar molecular geometry.
© true
© false
58) The number of lone pairs of electrons on the central atoms is an important factor used to determine the molecular shape or molecular geometry.
© true
© false
59) Pi bonds are covalent bonds in which the electron density is concentrated above and below the plane of the nuclei of the bonding atoms.
© true
© false
60) The BrF_{5} molecule has polar bonds and has a net dipole moment.
© true
© false
61) In a correctly balanced equation, the number of reactant molecules must equal the number of product molecules.
© true
© false
62) The limiting reactant is the reactant with the smallest initial mass.
© true
© false
63) The empirical formula is the simplest whole number ratio of atoms representing a chemical formula of a molecule.
© true
© false
64) Many compounds can be represented with the same empirical formula.
© true
© false
65) There is only one distinct empirical formula for each compound that exists.
© true
© false
66) The molecular formula is a whole number multiple of the empirical formula.
© true
○ false
67) The percent yield can be determined by dividing the actual yield by the theoretical yield and multiplying this value by 100%.
© true
© false
68) An electrolyte is a substance that dissolves in water to yield a solution that conducts electricity.
© true
© false
69) Hydration is the process in which organic solvent molecules surround a solute particle.
© true
© false
70) Ammonium carbonate is not water-soluble.
© true
© false
71) Sodium hydroxide is water-soluble.
© true
© false
72) $\mathrm{H}_{3} \mathrm{PO}_{4}$ is a strong acid.
© true
© false
73) The spectator ion is always included in the net ionic equation.
© true
© false
74) The oxidation number for oxygen in O_{2} is zero.
© true
© false
75) The oxidation number for a pure element is always zero.
© true
© false
76) The following reaction will occur $\mathrm{Na}(s)+\mathrm{AgCl}(a q) \rightarrow \mathrm{Ag}(s)+\mathrm{NaCl}(a q)$
© true
© false
77) Phenolphthalein is a universal indicator and maybe used as an indicator for all acid-base titrations.
© true
© false
78) The ripening of fruit, once picked, is an example of physical change.
© true
© false
79) When applying the scientific method, it is important to avoid any form of hypothesis.
© true
© false
80) When applying the scientific method, a model or theory should be based on experimental data.
© true
© false
81) Matter is anything that has mass and occupies space.
© true
© false
82) The density of a substance is an intensive property.
© true
© false
83) The volume of a substance is an intensive property.
© true
© false
84) Boiling point and melting point are extensive properties.
© true
© false
85) The rusting of a piece of iron under environmental conditions is a physical change.
© true
© false
86) The number 6.0448, rounded to 3 decimal places, becomes 6.045.
© true
© false
87) A scoop of vanilla ice cream is a pure substance.
© true
© false
88) A particular temperature in degrees Celsius is larger than the temperature in kelvins.
© true
© false
89) Zero kelvin $0 \mathrm{~K}<0^{\circ} \mathrm{F}<0^{\circ} \mathrm{C}$
© true
© false
90) 77 K is colder than 4 K .
© true
© false
91) The juice from an orange is a mixture.
© true
© false
92) Chemical reactions in a bomb calorimeter occur at constant pressure.
© true
© false
93) The work done on the surroundings by the expansion of a gas is $w=-P \Delta V$.
© true
© false
94) The heat absorbed by a system at constant pressure is equal to $\Delta U+P \Delta V$.
© true
© false
95) In an endothermic process, heat is absorbed by the system.
© true
© false
96) The enthalpy of vaporization of a compound is always positive.
© true
© false
97) A home aquarium is an example of an open system.
© true
© false
98) All elements in their standard state have an enthalpy of formation equal to zero.
© true
© false
99) ΔH does not depend on the path of a reaction, but ΔU does.
© true
© false
100) The enthalpy of formation of a liquid is always larger than the enthalpy of formation of the gas of the same compound.
© true
© false
101) In an endothermic reaction, in going from the reactants to the products at the same temperature, the value of q is negative.
© true
© false
102) Chemical reactions in a bomb calorimeter occur at constant pressure.
© true
© false
103) The work done on the surroundings by the expansion of a gas is $w=-P \Delta V$.
© true
© false
104) The heat absorbed by a system at constant pressure is equal to $\Delta U+P \Delta V$.
© true
© false
105) In an endothermic process, heat is absorbed by the system.
© true
© false
106) The enthalpy of vaporization of a compound is always positive.
© true
© false
107) A home aquarium is an example of an open system.
© true
© false
108) All elements in their standard state have an enthalpy of formation equal to zero.
© true
© false
109) ΔH does not depend on the path of a reaction, but ΔU does.
© true
© false
110) The enthalpy of formation of a liquid is always larger than the enthalpy of formation of the gas of the same compound.
© true
© false
111) In an endothermic reaction, in going from the reactants to the products at the same temperature, the value of q is negative.
© true
© false
112) Gases form heterogeneous mixtures or solutions with one another.
© true
© false
113) Gases are compressible and have a density that is much higher than liquids and solids.
© true
© false
114) When a closed-ended manometer is used for pressure measurements, and the closed end is under vacuum, the level of manometer liquid in the closed arm can never be lower than that in the other arm.
© true
© false
115) At a temperature of absolute zero, the volume of an ideal gas is zero.
© true
© false
116) According to the postulates of kinetic molecular theory, the molecules of all gases at a given temperature have the same average speed.
© true
© false
117) The rate of diffusion of a gas is inversely proportional to its molar mass.
© true
© false
118) For real gases, $P V>n R T$.
© true
© false
119) For a gas obeying Boyle's law, a plot of V versus $1 / P$ will give a straight line passing through the origin.
© true
© false
120) Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{OH}\right)$ will have a greater viscosity than ethylene glycol $\left(\mathrm{HO}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right.$ $\mathrm{OH})$ at the same temperature.
© true
© false
121) The shape of the water-to-glass meniscus results from the strong adhesive forces between glass and water.
© true
© false
122) Ice is less dense than water due to the formation of hydrogen bonds.
© true
© false
123) The maximum number of phases of a single substance that can coexist in equilibrium is two.
© true
© false
124) The surface tension of water is lowered when a detergent is present in solution.
© true
© false
125) In the packing of identical atoms with cubic unit cells, the packing efficiency increases as the coordination number increases.
© true
© false
126) Ionic crystals are composed of charged spheres that are held together by covalent bonds.

○ true
© false
127) Solids are generally most stable in crystalline form.
© true
© false
128) A face-centered crystal lattice has one atom in the center of the unit cell.
© true
© false
129) Molecular crystals are held together by the intermolecular forces of dispersion and dipole-dipole forces and by hydrogen bonding.
© true
© false
130) Colligative properties are properties that depend on the number of solvent particles in solution, but not on the nature of the solvent.
© true
© false
131) When a nonvolatile solute is dissolved in a liquid, the vapor pressure exerted by the liquid decreases.

○ true
© false
132) An "ideal solution" is a solution that obeys Raoult's law.
© true
© false
133) Colloidal particles may be solids, liquids, or gases.
© true
© false
134) Osmosis is the selective passage of solvent molecules through a porous membrane from a more concentrated solution to a more dilute one.
© true
© false
135) The solubility of gases in water always decreases with increasing temperature.
© true
© false
136) The solubility of a solid always increases with increasing solvent temperature.
© true
© false
137) A catalyst increases the rate of the reaction and is recovered completely at the end of the reaction.
© true
© false
138) The rate law predicted by the following two-step mechanism is Rate $=k[\mathrm{~A}][\mathrm{B}]$.
$\mathrm{A} \rightarrow \mathrm{C}+\mathrm{B}$ (slow)
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{E}$ (fast)
© true
© false
139) The rate of a reaction is determined by the rate of the fastest step in the mechanism.
© true
© false
140) A transition state is a species (or state) corresponding to an energy maximum on a reaction energy diagram.
© true
© false
141) A reaction intermediate is a species corresponding to a local energy maximum on a reaction energy diagram.
© true
© false
142) The rate law cannot be predicted from the stoichiometry of a reaction.
© true
© false
143) The units of the rate constant depend on the order of the reaction.
© true
© false
144) The units of the rate of reaction depend on the order of the reaction.
© true
© false
145) The intermediate in a reaction appears in the mechanism of the reaction and in the overall balanced equation.
© true
© false
146) The higher the pressure of a gas sample, the greater is its entropy.
© true
© false
147) The entropy of vaporization of a compound is always positive.
© true
© false
148) The entropy change ΔS° at 298 K for the reaction $\mathrm{NH}_{4} \mathrm{Cl}(s) \rightarrow \mathrm{NH}_{3}(g)+\mathrm{HCl}(g)$ is negative.
© true
© false
149) All elements in their standard state have standard entropies of formation equal to zero.
© true
© false
150) The following reaction is spontaneous under standard state conditions at $25^{\circ} \mathrm{C}$:
$\mathrm{AgCl}(s) \rightarrow \mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q)\left(\Delta G^{\circ}=55 \mathrm{~kJ} / \mathrm{mol}\right)$
© true
© false
151) $\Delta S_{\text {univ }}=-1$ for a spontaneous reaction.
© true
© false
152) For a given reaction, a change in the temperature may result in a change in the sign of Δ G.
© true
© false
153) At equilibrium, $\Delta G^{\circ}=0$.
© true
© false
154) As a chemical reaction proceeds toward equilibrium, the free energy of the system decreases at constant temperature and constant pressure.
© true
© false
155) In living systems, thermodynamically favorable reactions provide the free energy needed to drive necessary but thermodynamically unfavorable reactions.
© true
© false
156) The reaction $\mathrm{SiO}_{2}(s)+\mathrm{Pb}(s) \rightarrow \mathrm{PbO}_{2}(s)+\mathrm{Si}(s)$ is spontaneous:

$$
\begin{aligned}
& \Delta G_{\mathrm{f}}^{\circ}\left(\mathrm{PbO}_{2}(s)\right)=-217 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta G_{\mathrm{f}}^{\circ}\left(\mathrm{SiO}_{2}(s)\right)=-856 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

© true
© false
157) At equilibrium, the rate of the forward reaction is equal to the rate of the reverse reaction.
© true
© false
158) When the following reaction is at equilibrium
$2 \mathrm{NOCl}(g) \rightleftharpoons 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g)$
then $[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]=K_{\mathrm{c}}[\mathrm{NOCl}]^{2}$
© true
© false
159) The equilibrium constant expression for the reaction $\mathrm{CuO}(s)+\mathrm{H}_{2}(g) \rightleftharpoons \mathrm{Cu}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(g)$ is $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{H}_{2}\right] /\left[\mathrm{H}_{2} \mathrm{O}\right]$
© true
© false
160) If the system ${ }^{3 \mathrm{H}_{2}}(g)+\mathrm{N}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)$ is at equilibrium and more N_{2} is added, a net reaction that consumes some of the added N_{2} will occur until a new equilibrium is reached.
© true
© false
161) When a reaction system reaches equilibrium, the forward and reverse reactions stop.
© true
© false
162) Changing the amount of reactant or product in an equilibrium reaction will always change the equilibrium position, regardless of the physical state of the substance involved.
© true
© false
163) For any reaction, if $\Delta G^{\circ}>0$, then $K<1$.
© true
© false
164) A change in a concentration will not change the position of equilibrium.
© true
© false
165) A change in the temperature can change the value of the equilibrium constant.
© true
© false
166) Increasing the temperature of an exothermic reaction causes the equilibrium constant to increase and shifts the equilibrium toward products.
© true
© false
167) For the reaction of $A+B \rightleftharpoons C+D+$ heat, the reverse reaction is exothermic.
© true
© false
168) A temperature increase favors an endothermic reaction.
© true
© false
169) Equilibrium constants are known for the following reactions:

$$
\begin{aligned}
& \mathrm{S}(s)+(3 / 2) \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{SO}_{3}(g) \mathrm{K}_{\mathrm{c}}=9.2 \times 10^{23} \\
& \mathrm{SO}_{3}(g) \rightleftharpoons \mathrm{SO}_{2}(g)+(1 / 2) \mathrm{O}_{2}(g) \mathrm{K}_{\mathrm{c}}=48 \times 10^{-4}
\end{aligned}
$$

Thus, for the reaction $\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(g) \rightleftharpoons \mathrm{SO}_{2}(g) \quad K_{\mathrm{c}}=4.4 \times 10^{20}$.
© true
© false
170) If a strong acid such as HCl is diluted sufficiently with water, the pH will be higher than 7.
© true
© false
171) Weak acids have weak conjugate bases.
© true
© false
172) All strong acids have weak conjugate bases.
© true
© false
173) The stronger the acid, the weaker its conjugate base.
© true
© false
174) The ammonium ion, $\mathrm{NH} 4+$, is a weak acid.
© true
© false
175) In aqueous solutions at $25^{\circ} \mathrm{C}$, the sum of the hydroxide ion and hydronium ion concentrations ($[\mathrm{H} 3 \mathrm{O}+]+[\mathrm{OH}-]$) equals $1 \times 10-14$.
© true
© false
176) The first ionization constant Ka 1 is always smaller than the second ionization constant Ka 2 for the ionization of a diprotic acid.
© true
© false
177) A hydrohalic acid is a binary acid containing a halogen.
© true
© false
178) NH3 is a typical Lewis base.
© true
© false
179) A solution of sodium acetate $(\mathrm{CH} 3 \mathrm{COONa})$ in water is weakly basic.
© true
© false
180) $\mathrm{Kw}=1.0 \times 10-14$ under all conditions.
© true
© false
181) The following is the correct order for the acid strength for these oxoacids. $\mathrm{HClO}>$ $\mathrm{HClO} 2>\mathrm{HClO} 3>\mathrm{HClO} 4$
© true
© false
182) Amphoteric oxides exhibit both acidic and basic properties.
© true
© false
183) Amphoteric oxides are compounds that exhibit both acidic and basic behavior.
© true
© false
184) The amount of strong acid added to a buffer solution cannot exceed the original amount of conjugate base present in order for the buffer to still work.
© true
© false
185) A mixture made of 100 mL of 0.5 M CH 3 COOH and 100 mL of $0.5 \mathrm{M} \mathrm{CH3COONa}$ is classified as a buffer solution.
© true
© false
186) Indicators are weak acids that are one color in acidic solution and another color in basic solution.
© true
© false
187) The pH of a solution that is 0.20 M CH 3 COOH and 0.20 M CH 3 COONa should be higher than the pH of a 0.20 M CH 3 COOH solution.
© true
© false
188) Increasing the concentrations of the components of a buffer solution will increase the buffer range.

○ true
© false
189) Increasing the concentrations of the components of a buffer solution will increase the buffer capacity.
© true
© false
190) If the pH of a buffer solution is greater than the p Ka value of the buffer acid, the buffer will have more capacity to neutralize added base than added acid.
© true
© false
191) The endpoint in a titration is defined as the point when the appropriate indicator changes color.
© true
© false
192) The endpoint is used to estimate the equivalence point.
© true
© false
193) A CH3COOH/CH3COO- buffer can be produced by adding a strong acid to a solution of CH3COO- ions.
© true
© false
194) For a conjugate acid-base pair, $\mathrm{Kw}=\mathrm{Ka} / \mathrm{Kb}$
© true
© false
195) Reduction occurs at the anode of a galvanic cell.
© true
© false
196) At equilibrium $\mathrm{E}^{\circ}=0$.
© true
© false
197) Electrons flow to the cathode in a voltaic cell.
© true
© false
198) In the electrolyte of an electrochemical cell, current is carried by electrons moving from the anode to the cathode.
© true
© false
199) A salt bridge allows movement of cations and anions from one half-cell to the other.
© true
© false
200) $\mathrm{E}>0$ and $\Delta \mathrm{G}<0$ for a spontaneous process.
© true
© false
201) The Faraday constant represents the charge of 1 mole of electrons.
© true
© false
202) A SHE has the acid concentration of 1 M and the H 2 pressure is 1 atm .
© true
© false
203) A lead-storage battery is not rechargeable.
© true
© false
204) Lithium-ion batteries can be recharged many times.
© true
© false
205) In a fuel cell, an external source of electrical power is used to drive a nonspontaneous reaction in which a fuel is produced.
© true
© false
206) In a nuclear reaction elements are converted to other elements.
© true
© false
207) A nuclear reaction's reaction rate is affected by temperature, pressure, and catalysts.
© true
© false
208) A plot of the number of neutrons versus the number of protons in various isotopes produces a "belt of stability." Isotopes below the belt of stability (i.e., with a smaller neutron-to-proton ratio) decay by beta particle emission.
© true
© false
209) For stable atoms of elements having low atomic numbers (≤ 20), the neutron-to-proton ratio is close to zero.
© true
© false
210) All isotopes of elements with atomic numbers higher than 83 (Bi) are radioactive.
© true
© false
211) Naturally occurring uranium contains approximately $1 \% 235 \mathrm{U}$ and $99 \% 238 \mathrm{U}$. Of these, the isotope that undergoes fission in a nuclear reactor is U-238.
© true
© false
212) Alpha decay is not observed for isotopes of elements with atomic numbers less than 83.
© true
© false
213) Gamma rays are not deflected by an electric field.
© true
© false
214) Gamma rays are high energy electrons.
© true
© false
215) An alpha particle is a helium atom.
© true
© false
216) A beta particle is a proton.
© true
© false
217) A gamma particle has a charge of -1 .
© true
© false
218) Nuclear fission is the process in which a heavy nucleus (mass number > 200) divides to form smaller nuclei of intermediate mass and one or more protons.
© true
© false
219) Nuclear fusion is the combination of small nuclei into larger ones.
© true
© false
220) The wavelengths of light that are absorbed by stratospheric ozone are known to cause cancer.
© true
© false
221) Ozone is destroyed naturally by the absorption of short-wavelength light.
© true
© false
222) Mars has an atmosphere made mostly of oxygen.
© true
© false
223) Jupiter has no solid surface and is 90% hydrogen gas and 9% helium gas.
© true
© false
224) The air at sea level is $\sim 80 \%$ oxygen and $\sim 20 \%$ nitrogen.
© true
© false
225) There is more argon in the air at sea level than there is CO_{2}.
© true
© false
226) The gases spewed into the atmosphere when a volcano erupts are $\mathrm{N}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{HCl}, \mathrm{HF}, \mathrm{CO}_{2}$, and water vapor.
© true
© false
227) The major contributor to the greenhouse effect is $\mathrm{H}_{2} \mathrm{~S}$.
© true
© false
228) Ethylenediaminetetraacetic acid (EDTA) is an effective antidote for heavy metal poisoning (e.g., $\mathrm{Pb} 2+$ and $\mathrm{Hg} 2+$).
© true
© false
229) The correct formula for the dibromobis(oxalato)cobaltate(III) ion is $[\mathrm{Co}(\mathrm{C} 2 \mathrm{O} 4) \mathrm{Br} 2] 3+$.
© true
© false
230) The systematic name of the coordination compound $\mathrm{K} 2[\mathrm{Co}(\mathrm{H} 2 \mathrm{O}) 2 \mathrm{I} 4]$ is potassium diaquatetraiodocobaltate(II).
© true
© false
231) The oxidation number of Co in $[\mathrm{Co}(\mathrm{NH} 3) 4 \mathrm{Cl} 2] \mathrm{Cl}$ is +1 .
© true
© false
232) The maximum oxidation state of an element in the first transition series never exceeds its group number.
© true
© false
233) In complexes of transition metals, the maximum coordination number of the metal is equal to its number of d electrons.
© true
© false
234) A complex ion that undergoes a very slow exchange reaction is called an inert complex.
© true
© false
235) Octahedral complexes can exhibit geometric and optical isomerism.
© true
© false
236)

The systematic name for the hydrocarbon with the following structural formula is 1-ethyl-2methylbutane.
\%media:chapter23c_15_jpg.ext\%
© true
© false
237) Stereoisomers that are mirror images of each other, but are not superimposable, are called optical isomers.
© true
© false
238) A pair of nonsuperimposable mirror images is called enantiomers.
© true
© false
239) The reaction of hydrogen chloride gas with propene will yield 1-chloropropane as the main product.
© true
© false
240) A characteristic reaction of alkanes is addition.
© true
© false
241) A characteristic reaction of alkenes is addition.
© true
© false
242) The monomer used to prepare polyvinyl chloride (PVC) is $\mathrm{CHCl}=\mathrm{CHCl}$.
© true
© false
243) A thermoplastic polymer can be melted and reshaped or heated and bent.
© true
© false
244) Liquid crystals exhibit properties of both liquids and gases.
© true
© false
245) Liquids are anisotropic because their properties are independent of the axis of testing.
© true
© false
246) Liquid crystals are anisotropic because the properties they display depend on the direction (orientation) of the measurement.
© true
© false
247) Polystyrene with air or gas blown into the solid is the main component in Styrofoam.
© true
© false
248) Polyethylene consisting primarily of unbranched chains is known as high-density polyethylene (HDPE).
© true
© false
249) A polymer where the monomers are connected by an amide linkage are called polyamines.
(© true
© false
250) The monomer for a polyester has the general formula of RCOOR'.
© true
© false
251) Ceramics are usually formed by melting and then solidifying inorganic substances such as clays.
© true
© false
252) Ceramics are polymeric inorganic compounds that have low melting points.
© true
© false
253) Nonmetals are more electropositive than metals.
© true
© false
254) Hydrogen is placed at the top of Group 1 of the periodic table, so it must be a metal.
© true
© false
255) Binary hydrides contain hydrogen and either a metal or nonmetal.
© true
© false
256) Of the three oxides $\mathrm{SiO} 2, \mathrm{MgO}$, and P 4 O 10 , the most acidic oxide is P 4 O 10 .
© true
© false
257) P 4 O 6 and P 4 O 10 are allotropes of phosphorus.
© true
© false
258) Alkali metal hydrides are very reactive with water, forming H 2 gas.
© true
© false
259) The chemistry of fluorine differs in many ways from that of the rest of the halogens.
© true
© false
260) Ionic hydrides do not have exact (stoichiometric) formulas.
© true
© false
261) The acidity of oxides of main group elements increases across a period from left to right.
© true
© false
262) The acidity of oxides of main group elements increases down a group, from top to bottom.
© true
© false
263) The Haber process is the first step in the manufacture of sulfuric acid.
© true
© false
264) Phosphoric acid (H3PO4) is a strong acid.
© true
© false

