Chapter 1: Systems of Linear Equations and Matrices

Multiple Choice Questions

1. Which of the following equations is linear?
(A) $2 x_{1}^{2}+3 x_{2}^{3}+4 x_{3}^{4}=5$
(B) $\sqrt{3} x_{1}-\sqrt{2} x_{2}+x_{3}=5$
(C) $\sqrt{5} x_{1}+5 \sqrt{x_{2}}-x_{3}=1$
(D) $2^{2} x_{1}+\cos \left(x_{2}\right)+4 x_{3}=7$
2. Which system corresponds to the following augmented matrix?

$$
\left[\begin{array}{rrrr}
1 & 11 & 6 & 3 \\
9 & 4 & 0 & -2
\end{array}\right]
$$

(A) $x_{1}+11 x_{2}=-3$
$9 x_{1}+4 x_{2}=-2$
(B) $\begin{aligned} x_{1}+11 x_{2}+6 x_{3} & =3 \\ 9 x_{1}+4 x_{2} & =-2\end{aligned}$
(C) $\begin{aligned} x_{1}+11 x_{2}+6 x_{3}+3 x_{4} & =0 \\ 9 x_{1}+4 x_{2}-2 x_{4} & =0\end{aligned}$
$x_{1}+9 x_{2}=0$
(D) $\begin{aligned} 11 x_{1}+4 x_{2} & =0 \\ 6 x_{1} & =0\end{aligned}$
$3 x_{1}-2 x_{2}=0$
3. Which of the following statements best describes the following augmented matrix?

$$
A=\left[\begin{array}{rrrr}
1 & 2 & 6 & 5 \\
-1 & 1 & -2 & 3 \\
1 & -4 & -2 & 1
\end{array}\right]
$$

(A) A is consistent with a unique solution.
(B) A is consistent with infinitely many solutions.
(C) A is inconsistent.
(D) none of the above.
4. Which of the following matrices is in reduced row echelon form?
(A) $\left[\begin{array}{rrrr}1 & 0 & -1 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 3 & 1\end{array}\right]$
(B) $\left[\begin{array}{rrrr}1 & 0 & 2 & 5 \\ 0 & 1 & -7 & 5 \\ 0 & 0 & 1 & 14\end{array}\right]$
(C) $\left[\begin{array}{rrrrr}1 & 0 & 0 & 11 & -3 \\ 0 & 0 & 0 & 1 & 4\end{array}\right]$
(D) $\left[\begin{array}{rrr}1 & 0 & -5 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right]$
5. If the matrix A is $4 \times 2, B$ is $3 \times 4, C$ is $2 \times 4, D$ is 4×3, and E is 2×5, which of the following expressions is not defined?
(A) $A^{T} D+C B^{T}$
(B) $\left(B+D^{T}\right) A$
(C) $C A+C B^{T}$
(D) $D B A E$
6. What is the second row of the product $A B$?

$$
A=\left[\begin{array}{lll}
0 & 2 & 3 \\
5 & 4 & 8 \\
9 & 7 & 2
\end{array}\right], B=\left[\begin{array}{lll}
2 & 1 & 7 \\
6 & 3 & 2 \\
2 & 9 & 7
\end{array}\right]
$$

(A) $\left[\begin{array}{lll}18 & 33 & 25\end{array}\right]$
(B) $\left[\begin{array}{lll}64 & 48 & 91\end{array}\right]$
(C) $\left[\begin{array}{lll}50 & 89 & 99\end{array}\right]$
(D) $\left[\begin{array}{lll}48 & 89 & 33\end{array}\right]$
7. Which of the following is the determinant of the 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$?
(A) $a d-b c$
(B) $b c-a d$
(C) $\frac{1}{b c-a d}$
(D) $\frac{1}{a d-b c}$
8. Which of the following matrices is not invertible?
(A) $\left[\begin{array}{ll}3 & 6 \\ 2 & 4\end{array}\right]$
(B) $\left[\begin{array}{ll}7 & 7 \\ 2 & 3\end{array}\right]$
(C) $\left[\begin{array}{ll}9 & 0 \\ 4 & 4\end{array}\right]$
(D) $\left[\begin{array}{ll}9 & 3 \\ 6 & 5\end{array}\right]$
9. Which of the following matrices is not an elementary matrix?
(A) $\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$
(B) $\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$
(C) $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
(D) $\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1\end{array}\right]$
10. For which elementary matrix E will the equation $E A=B$ hold?

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
1 & 4 & 6 \\
0 & 0 & 1 \\
2 & 10 & 9
\end{array}\right], B=\left[\begin{array}{rrr}
1 & 4 & 6 \\
0 & 0 & 1 \\
0 & 2 & -3
\end{array}\right] \\
\text { (A) }\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right] \quad \text { (B) }\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
\end{gathered} \text { (C) }\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right] \quad \text { (D) }\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] .
$$

11. Which matrix will be used as the inverted coefficient matrix when solving the following system?

$$
3 x_{1}+x_{2}=4
$$

$$
5 x_{1}+2 x_{2}=7
$$

(A) $\left[\begin{array}{rr}2 & -1 \\ -5 & 3\end{array}\right]$
(B) $\left[\begin{array}{rr}-2 & 1 \\ 5 & -3\end{array}\right]$
(C) $\left[\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right]$
(D) $\left[\begin{array}{ll}-2 & -1 \\ -5 & -3\end{array}\right]$
12. What value of b makes the following system consistent?

$$
\begin{aligned}
& 4 x_{1}+2 x_{2}=b \\
& 2 x_{1}+x_{2}=0
\end{aligned}
$$

(A) $b=-1$
(B) $b=0$
(C) $b=1$
(D) $b=2$
13. If A is a 3×3 diagonal matrix, which of the following matrices is not a possible value of A^{k} for some integer k ?
(A) $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9\end{array}\right]$
(B) $\left[\begin{array}{rrr}1 & 0 & 1 \\ 0 & 16 & 0 \\ 4 & 0 & 25\end{array}\right]$
(C) $\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & -1\end{array}\right]$
(D) $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
14. The matrix $\left[\begin{array}{rrr}3 & 0 & 0 \\ 0 & -7 & 0 \\ 0 & 0 & 1\end{array}\right]$ is:
(A) upper triangular.
(B) lower triangular.
(C) both (A) and (B).
(D) neither (A) nor (B).
15. If A is a 4×5 matrix, find the domain and codomain of the transformation $T_{A}(\mathbf{x})=A \mathbf{x}$.
(A) Not enough information
(B) Domain: R^{4}, Codomain: R^{5}
(C) Domain: R^{5}, Codomain: R^{5}
(D) Domain: R^{5}, Codomain: R^{4}
16. Which of the following is a matrix transformation?
(A) $T(x, y, z)=\left(y x^{2}, y z^{2}\right)$
(B) $T(x, y, z, w)=(x y, y z, z w, w x)$
(C) $T(x, y, z)=(x+1, x+2, x+z, y+z)$
(D) $T(x, y)=(4 x, 5 x,-x, 0)$
17. Which matrix represents reflection about the $x y$-plane?
(A) $\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(B) $\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$
(C) $\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$
(D) $\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$
18. Use matrix multiplication to find the image of the vector $(2,1)$ when it is rotated counterclockwise about the origin through an angle $\theta=45^{\circ}$.
(A) $\left(\frac{\sqrt{2}}{2}, \frac{3 \sqrt{2}}{2}\right)$
(B) $\left(\frac{3 \sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
(C) $\left(-\frac{\sqrt{2}}{2}, \frac{3 \sqrt{2}}{2}\right)$
(D) $\left(-\frac{3 \sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
19. Which of the following pairs of operators $T_{1}, T_{2}: R^{2} \rightarrow R^{2}$ commute? (That is, for which pair is it true that $T_{1} \circ T_{2}=T_{2} \circ T_{1}$?)
(A) T_{1} is the reflection about the x-axis.
T_{2} is the reflection about line $y=x$.
(B) T_{1} is the orthogonal projection onto the x-axis.
T_{2} is the reflection about line $y=x$.
(C) T_{1} is the counterclockwise rotation about the origin through an angle of π.
T_{2} is the projection onto the y-axis.
(D) T_{1} is the reflection about the x-axis.
T_{2} is the counterclockwise rotation about the origin through an angle of $\pi / 2$.

Free Response Questions

1. Find the relationship between a and b such that the following system has infinitely many solutions.

$$
\begin{array}{r}
-x+2 y=a \\
-3 x+6 y=b
\end{array}
$$

https:://ebookyab.ir/solution-manual-elementary-linear-algebra-anton-rorres/

 Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)Elementary Linear Algebra 12e
Anton/Rorres
2. Solve the following system and use parametric equations to describe the solution set.

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =11 \\
2 x_{1}-x_{2}+x_{3} & =2 \\
3 x_{1}+x_{2}+4 x_{3} & =13
\end{aligned}
$$

3. Determine whether the following system has no solution, exactly one solution, or infinitely many solutions.

$$
\begin{aligned}
2 x_{1}+2 x_{2} & =2 \\
x_{1}+x_{2} & =4
\end{aligned}
$$

4. Find the value of k that makes the system $\left[\begin{array}{rrr}15 & -3 & 6 \\ -10 & k & 9\end{array}\right]$ inconsistent.
5. Solve the following system using Gaussian elimination.

$$
\begin{aligned}
x_{1}-x_{2}-5 x_{3}= & -1 \\
-2 x_{1}+2 x_{2}+11 x_{3}= & 1 \\
3 x_{1}-x_{2}+x_{3}= & 3
\end{aligned}
$$

6. Solve the following system for x, y, and z.

$$
\begin{aligned}
& \frac{1}{x}-\frac{1}{y}-\frac{1}{z}=0 \\
& \frac{2}{x}+\frac{1}{y}+\frac{1}{z}=3 \\
& \frac{3}{x} \quad-\frac{1}{z}=0
\end{aligned}
$$

7. The curve $y=a x^{3}+b x^{2}+x+c$ passes through the points $(0,0),(1,1)$, and $(-1,-2)$. Find and solve a system of linear equations to determine the values of a, b, and c.
8. Solve the following system for x and y.

$$
\begin{aligned}
& x^{2}+y^{2}=6 \\
& x^{2}-y^{2}=2
\end{aligned}
$$

9. Given $C=\left[\begin{array}{rr}1 & -1 \\ 2 & 0\end{array}\right]$, find $C C^{T}$.
10. Express the following matrix equation as a system of linear equations.

$$
\left[\begin{array}{rrr}
-1 & 7 & 0 \\
0 & 4 & 3 \\
6 & 0 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

