Chapter 1

Introduction

1.1 Problems

1-1. Compute λ_{D} and N_{D} for the following cases: (a) A glow discharge, $N_{e}=10^{16} \mathrm{~m}^{-3}$, $k_{\mathrm{B}} T_{e}=2 \mathrm{eV}$, (b) The Earth's ionosphere, $N_{e}=10^{12} \mathrm{~m}^{-3}, k_{\mathrm{B}} T_{e}=0.1 \mathrm{eV}$, (c) A fusion machine, $N_{e}=10^{23} \mathrm{~m}^{-3}, k_{\mathrm{B}} T_{e}=9 \mathrm{keV}$.

Solution:

$$
\lambda_{\mathrm{D}}=\sqrt{\frac{\epsilon_{0} k_{\mathrm{B}} T_{e}}{N_{0} q_{e}^{2}}} ; \quad N_{\mathrm{D}}=N_{0}\left[\frac{4 \pi \lambda_{\mathrm{D}}^{3}}{3}\right]
$$

The formulas are straight forward but students often make the mistake of not using SI units for the temperature which requires a conversion from eV to K using $1 \mathrm{eV}=11600 \mathrm{~K}$ and then multiplying this temperature by $k_{\mathrm{B}}=1.38 \times 10^{-23}$ Joule $/ \mathrm{K}$.
(a)

$$
\lambda_{\mathrm{D}}=1.05 \times 10^{-4} \mathrm{~m} ; \quad N_{\mathrm{D}}=48738
$$

(b)

$$
\lambda_{\mathrm{D}}=0.00235 \mathrm{~m} ; \quad N_{\mathrm{D}}=54532
$$

(c)

$$
\lambda_{\mathrm{D}}=2.23 \times 10^{-6} \mathrm{~m} ; \quad N_{\mathrm{D}}=4.656 \times 10^{6}
$$

1-2. Calculate the average velocity of nitrogen molecules at room temperature assuming three degrees of freedom.

Solution:

$E_{a v}=\frac{3}{2} k_{\mathrm{B}} T$ where $T=293 \mathrm{~K}$
$E_{a v}=6.065 \times 10^{-21} \mathrm{~J}$; Now use the fact that $E_{a v}=\frac{1}{2} m u^{2}$ where m is the mass of the Nitrogen molecule. Nitrogen gas is diatomic, the molecular mass is $28 \mathrm{~g} / \mathrm{mol}$. So

$$
m=\frac{28 \mathrm{~g}}{\mathrm{~mol}} \cdot \frac{1 \mathrm{~mol}}{6.02 \times 10^{23}} \cdot \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=4.65 \times 10^{-26} \mathrm{~kg}
$$

$$
u=\sqrt{\frac{2 E_{a v}}{m}}=510 \mathrm{~m} / \mathrm{s}
$$

1-3. Calculate and plot the electrostatic potential and electric field of a test particle of charge $+Q$ in free space and in a plasma of number density N_{0} and temperature T. Label the distance axis of your plot in units of Debye length.

Solution:

This problem involves plotting the functions

$$
\Phi(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r}
$$

and

$$
\Phi(r)=\left[\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r}\right] e^{-r / \lambda_{\mathrm{D}}}
$$

Figure 1.1 shows what the plots should look like. The plots shown were obtained using the code shown in Figure 1.2 executed in the MathWorks MATLAB software package.

1-4. A metal sphere of radius, $r=a$, with charge, Q, is placed in a neutral plasma with number density, N_{0} and temperature, T. Calculate the effective capacitance of the system. Compare this with the capacitance of the same sphere placed in free space.

Solution:

Capacitance C is the ratio of stored charge Q to potential $V: C=Q / V$. In free space, the potential from a charge Q is given by

$$
V(r)=\frac{Q}{4 \pi \epsilon_{0} r}
$$

So the capacitance of the sphere in free space will be

$$
C=4 \pi \epsilon_{0} a \quad \text { Farads }
$$

In a plasma, the potential from the same charge Q will be modified by the Debye shielding effect:

$$
V(r)=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{Q}{r} e^{-r / \lambda_{\mathrm{D}}}
$$

where

$$
\lambda_{\mathrm{D}}=\sqrt{\frac{\epsilon_{0} k_{\mathrm{B}} T_{e}}{N_{0} q_{e}^{2}}}
$$

Thus the capacitance of the sphere in the plasma will be:

$$
C=4 \pi \epsilon_{0} a e^{-a / \lambda_{\mathrm{D}}} \quad \text { Farads }
$$

Figure 1.1: Plot for Problem 1-3.

```
%Problem 1-3
%define constants and variables
clear all;
eps0=8.85e-12;
kB=1.38e-23;
qe=1.6e-19;
T=0.2*11600; %Temperature and Density arbitrary for this problem
NO=10^11;
Q=8.65e-12; %Charge also arbitrary
%First caluculate the Debye length
LambdaD=sqrt(eps0*kB*T./(N0*qe.^2));
%Define r vector in terms of Debye length, we will not start at zero
%because the potential goes to infinity at r=0
r=[LambdaD./100:LambdaD./1000:4*LambdaD];
%Define the two potential functions
Phi_freespace=1./(4*pi*eps0).*Q./r;
Phi_plasma=1./(4*pi*eps0).*Q./r.*exp (-r./LambdaD);
%Make the plots, normalize axes to Debye Length and Q/(4*pi*eps0*lambdaD)
figure(1)
plot(r./LambdaD, Phi_freespace.*(4*pi*eps0*LambdaD)/Q,'LineWidth',2); hold on;
plot(r./LambdaD, Phi_plasma.*(4*pi*eps0*LambdaD)/Q, '--', 'LineWidth',2);
hold off
ylim([0 4])
%xlim([0}50-4]
%make the font size bigger, 'gca' means 'get current axis'
set(gca,'FontSize', 14)
legend('Free Space', 'Plasma')
%Add title and labels
title('Electrostatic Potential')
xlabel('Distance [\lambda_{D}]')
ylabel('\phi(r) [Q/(4\pi\epsilon_o\lambda_D)]')
```

Figure 1.2: MATLAB Code for plot shown in Figure 1.1.

1-5. Consider two infinite, parallel plates parallel plates located at $x= \pm d$, kept at a potential of $\Phi=0$. The space between the plates is uniformly filled with a gas of density N of particles of charge q. (a) Using Poisson's equation, show that the potential distribution between the plates is $\Phi(x)=\left[N q /\left(2 \epsilon_{0}\right)\right]\left(d^{2}-x^{2}\right)$. (b) Show that for $d>\lambda_{\mathrm{D}}$, the energy needed to transport a particle from one of the plates to the mid-point (i.e., $x=0$) is greater than the average kinetic energy of the particles. (Assume a Maxwellian distribution of particle speeds.)

Solution:

(a) We start with Poisson's equation:

$$
\begin{gathered}
\nabla^{2} \Phi=-\rho / e p s_{0} \\
\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}+\frac{\partial^{2} \Phi}{\partial z^{2}}=\frac{-N q}{\epsilon_{0}}
\end{gathered}
$$

Since the two plates are infinite, this is a one dimensional problem $\frac{\partial^{2}}{\partial y^{2}}=$ $\frac{\partial^{2}}{\partial z^{2}}=0$, Thus:

$$
\begin{gathered}
\frac{\partial^{2} \Phi}{\partial x^{2}}=\frac{-N q}{\epsilon_{0}} \\
\frac{\partial \Phi}{\partial x}=\frac{-N q}{\epsilon_{0}} x+C_{1} \\
\Phi(x)=-\frac{N q x^{2}}{e \epsilon_{0}}+C_{1} x+C_{2}
\end{gathered}
$$

We now use the boundary condition that the potential at the plates is zero $\Phi(-d)=\Phi(d)=0$ to get

$$
\Phi(x)=\frac{N q}{2 \epsilon_{0}}\left(d^{2}-x^{2}\right)
$$

(b) The energy E_{p} needed to transport a particle from the wall to the center can be calculated from the difference in potential between these two locations:

$$
\begin{gathered}
E_{p}=q(\Phi(0)-\Phi(d)) \\
E_{p}=q \cdot \frac{N q}{2 \epsilon_{0}} \cdot d^{2}=\frac{N q^{2} d^{2}}{2 \epsilon_{0}}
\end{gathered}
$$

The average kinetic energy E_{k} of the particle, assuming a 1-D system is :

$$
E_{k}=\frac{1}{2} k_{\mathrm{B}} T
$$

We can relate E_{p} to E_{k} using the fact that $d>\lambda_{\mathrm{D}}$:

$$
\begin{aligned}
d & >\lambda_{\mathrm{D}}=\sqrt{\frac{\epsilon_{0} k_{\mathrm{B}} T}{N q^{2}}} \\
d^{2} & >\frac{\epsilon_{0} k_{\mathrm{B}} T}{N q^{2}} \\
\frac{N q^{2} d^{2}}{2 \epsilon_{0}} & >\frac{k_{\mathrm{B}} T}{2} \\
E_{p} & >E_{k}
\end{aligned}
$$

