
 Chapter 4 Solutions S-3

 4.1

 4.1.1 Th e value of the signals is as follows:

 Mathematically, the MemRead control wire is a “don’t care”: the instruction
will run correctly regardless of the chosen value. Practically, however,
 MemRead should be set to false to prevent causing a segment fault or cache
miss.

 4.1.2 Registers, ALUsrc mux, ALU, and the MemToReg mux.

 4.1.3 All blocks produce some output. Th e outputs of DataMemory and Imm
Gen are not used.

 4.2 Reg2Loc for ld : When executing ld , it doesn’t matter which value is passed
to “Read register 2”, because the ALUSrc mux ignores the resulting “Read
data 2” output and selects the sign extended immediate value instead.

 MemToReg for sd and beq : Neither sd nor beq write a value to the register
fi le. It doesn’t matter which value the MemToReg mux passes to the register
fi le because the register fi le ignores that value.

 4.3

 4.3.1 25 + 10 = 35%. Only Load and Store use Data memory.

 4.3.2 100% Every instruction must be fetched from instruction memory before
it can be executed.

 4.3.3 28 + 25 + 10 + 11 + 2 = 76%. Only R-type instructions do not use the Sign
extender.

 4.3.4 Th e sign extend produces an output during every cycle. If its output is not
needed, it is simply ignored.

 4.4

 4.4.1 Only loads are broken. MemToReg is either 1 or “don’t care” for all other
instructions.

 4.4.2 I-type, loads , stores are all broken.

 4.5 For context: Th e encoded instruction is sd x12, 20(x13)

 4.5.1

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/

S-4 Chapter 4 Solutions

 4.5.2 Th e new PC is the old PC + 4. Th is signal goes from the PC, through the
“PC + 4” adder, through the “branch” mux, and back to the PC.

 4.5.3 ALUsrc : Inputs: Reg[x12] and 0x0000000000000014 ; Output:
 0x0000000000000014

 MemToReg : Inputs: Reg[x13] + 0x14 and <undefined> ; output:
 <undefined>

 Branch: Inputs: PC+4 and 0x000000000000000A

 4.5.4 ALU inputs: Reg[x13] and 0x0000000000000014

 PC + 4 adder inputs: PC and 4

 Branch adder inputs: PC and 0x0000000000000028

 4.6

 4.6.1 No additional logic blocks are needed.

 4.6.2 Branch: false
 MemRead: false (See footnote from solution to problem 4.1.1.)
 MemToReg: 0
 ALUop: 10 (or simply saying “add” is suffi cient for this problem)
 MemWrite: false
 ALUsrc: 1
 RegWrite: 1

 4.7

 4.7.1 R-type : 30 + 250 + 150 + 25 + 200 + 25 + 20 = 700ps

 4.7.2 ld : 30 + 250 + 150 + 25 + 200 + 250 + 25 + 20 = 950 ps

 4.7.3 sd : 30 + 250 + 150 + 200 + 25 + 250 = 905

 4.7.4 beq : 30 + 250 + 150 + 25 + 200 + 5 + 25 + 20 = 705

 4.7.5 I-type : 30 + 250 + 150 + 25 + 200 + 25 + 20 = 700ps

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/

 Chapter 4 Solutions S-5

 4.7.6 950ps

 4.8 Using the results from Problem 4.7, we see that the average time per
instruction is

 .52*700 + .25*950 + .11*905 + .12 * 705 = 785.6ps

 In contrast, a single-cycle CPU with a “normal” clock would require a
clock cycle time of 950.

 Th us, the speedup would be 925/787.6 = 1.174

 4.9

 4.9.1 Without improvement: 950; With improvement: 1250

 4.9.2 Th e running time of a program on the original CPU is 950*n. Th e running
time on the improved CPU is 1250*(0.95)*n = 1187.5. Th us, the “speedup”
is 0.8. (Th us, this “improved” CPU is actually slower than the original).

 4.9.3 Because adding a multiply instruction will remove 5% of the instructions,
the cycle time can grow to as much as 950/(0.95) = 1000. Th us, the time
for the ALU can increase by up to 50 (from 200 to 250).

 4.10

 4.10.1 Th e additional registers will allow us to remove 12% of the loads and
stores, or (0.12)*(0.25 + 0.1) = 4.2% of all instructions. Th us, the time to
run n instructions will decrease from 950*n to 960*.958*n = 919.68*n.
Th at corresponds to a speedup of 950/895.73 = 1.03.

 4.10.2 Th e cost of the original CPU is 4507; the cost of the improved CPU is 4707.

 PC: 5
 I-Mem: 1000
 Register fi le: 200
 ALU: 100
 D-Mem: 2000
 Sign Extend: 1002
 Controls: 10002
 adders: 30*24
 muxes: 4*102
 single gates: 2*1

 Th us, for a 3% increase in performance, the cost of the CPU increases by
about 4.4%.

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/

S-6 Chapter 4 Solutions

 4.10.3 From a strictly mathematical standpoint it does not make sense to add
more registers because the new CPU costs more per unit of performance.
However, that simple calculation does not account for the utility of the
performance. For example, in a real-time system, a 3% performance may
make the diff erence between meeting or missing deadlines. In which case,
the improvement would be well worth the 4.4% additional cost.

 4.11

 4.11.1 No new functional blocks are needed.

 4.11.2 Only the control unit needs modifi cation.

 4.11.3 No new data paths are needed.

 4.11.4 No new signals are needed.

 4.12

 4.12.1 No new functional blocks are needed.

 4.12.2 Th e register fi le needs to be modifi ed so that it can write to two registers
in the same cycle. Th e ALU would also need to be modifi ed to allow read
data 1 or 2 to be passed through to write data 1.

 4.12.3 Th e answer depends on the answer given in 4.12.2: whichever input was
not allowed to pass through the ALU above must now have a data path to
write data 2.

 4.12.4 Th ere would need to be a second RegWrite control wire.

 4.12.5 Many possible solutions.

 4.13

 4.13.1 We need some additional muxes to drive the data paths discussed in 4.13.3.

 4.13.2 No functional blocks need to be modifi ed.

 4.13.3 Th ere needs to be a path from the ALU output to data memory’s write
data port. Th ere also needs to be a path from read data 2 directly to Data
memory’s Address input.

 4.13.4 Th ese new data paths will need to be driven by muxes. Th ese muxes will
require control wires for the selector.

 4.13.5 Many possible solutions.

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/

 Chapter 4 Solutions S-7

 4.14 None: all instructions that use sign extend also use the register fi le, which
is slower.

 4.15

 4.15.1 Th e new clock cycle time would be 750. ALU and Data Memory will now
run in parallel, so we have eff ectively removed the faster of the two (the
ALU with time 200) from the critical path.

 4.15.2 Slower. Th e original CPU takes 950*n picoseconds to run n instructions.
Th e same program will have approximately 1.35*n instructions when
compiled for the new machine. Th us, the time on the new machine will be
750*1.35n = 1012.5*n. Th is represents a “speedup” of .93.

 4.15.3 Th e number of loads and stores is the primary factor. How the loads and
stores are used can also have an eff ect. For example, a program whose
loads and stores tend to be to only a few diff erent address may also run
faster on the new machine.

 4.15.4 Th is answer is a matter of opinion.

 4.16

 4.16.1 Pipelined: 350; non-pipelined: 1250

 4.16.2 Pipelined: 1250; non-pipelined: 1250

 4.16.3 Split the ID stage. Th is reduces the clock-cycle time to 300ps.

 4.16.4 35%.

 4.16.5 65%

 4.17 n + k − 1. Let’s look at when each instruction is in the WB stage. In a
k-stage pipeline, the 1st instruction doesn’t enter the WB stage until cycle
k. From that point on, at most one of the remaining n − 1 instructions is
in the WB stage during every cycle.

 Th is gives us a minimum of k + (n − 1) = n + k − 1 cycles.

 4.18 x13 = 33 and x14 = 36

 4.19 x15 = 54 (Th e code will run correctly because the result of the fi rst
instruction is written back to the register fi le at the beginning of the 5th
cycle, whereas the fi nal instruction reads the updated value of x1 during
the second half of this cycle.)

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/

S-8 Chapter 4 Solutions

 4.20 addi x11, x12, 5
 NOP
 NOP
 add x13, x11, x12
 addi x14, x11, 15
 NOP
 add x15, x13, x12

 4.21

 4.21.1 Pipeline without forwarding requires 1.4*n*250ps. Pipeline with
forwarding requires 1.05*n*300ps. Th e speedup is therefore (1.4*250)/
(1.05*300) = 1.11.

 4.21.2 Our goal is for the pipeline with forwarding to be faster than the
pipeline without forwarding. Let y be the number of stalls remaining
as a percentage of “code” instructions. Our goal is for 300*(1+y)*n
< 250*1.4*n. Th us, y must be less than 16.7%.

 4.21.3 Th is time, our goal is for 300(1 + y)*n < 250(1 + x)*n. Th is happens when
y < (250x − 50)/300.

 4.21.4 It cannot. In the best case, where forwarding eliminates the need for
every NOP, the program will take time 300*n to run on the pipeline with
forwarding. Th is is slower than the 250*1.075*n required on the pipeline
with no forwarding.

 4.21.5 Speedup is not possible when the solution to 4.21.3 is less than 0. Solving
0< (250x − 50)/300 for x gives that x must be at least 0.2.

 4.22

 4.22.1 Stalls are marked with **:

 sd x29, 12(x16) IF ID EX ME WB
 ld x29, 8(x16) IF ID EX ME WB
 sub x17, x15, x14 IF ID EX ME WB
 bez x17, label ** ** IF ID EX ME WB
 add x15, x11, x14 IF ID EX ME WB
 sub x15,x30,x14 IF ID EX ME WB

 4.22.2 Reordering code won’t help. Every instruction must be fetched; thus,
every data access causes a stall. Reordering code will just change the pair
of instructions that are in confl ict.

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/

 Chapter 4 Solutions S-9

 4.22.3 You can’t solve this structural hazard with NOPs, because even the NOPs
must be fetched from instruction memory.

 4.22.4 35%. Every data access will cause a stall.

 4.23

 4.23.1 Th e clock period won’t change because we aren’t making any changes to
the slowest stage.

 4.23.2 Moving the MEM stage in parallel with the EX stage will eliminate the
need for a cycle between loads and operations that use the result of the
loads. Th is can potentially reduce the number of stalls in a program.

 4.23.3 Removing the off set from ld and sd may increase the total number of
instructions because some ld and sd instructions will need to be replaced
with a addi/ld or addi/sd pair.

 4.24 Th e second one. A careful examination of Figure 4.59 shows that the need
for a stall is detected during the ID stage. It is this stage that prevents the
fetch of a new instruction, eff ectively causing the add to repeat its ID stage.

 4.25

 4.25.1 … indicates a stall. ! indicates a stage that does not do useful work.

 ld x10, 0(x13) IF ID EX ME | WB
 ld x11, 8(x13) IF ID EX | ME WB
 add x12, x10, x11 IF ID | .. EX ME! WB
 addi x13, x13, -16 IF | .. ID EX ME! WB
 bnez x12, LOOP | .. IF ID EX ME! WB!
 ld x10, 0(x13) IF ID EX ME WB
 ld x11, 8(x13) IF ID EX ME WB
 add x12, x10, x11 IF ID .. EX | ME! WB
 addi x13, x13, -16 IF .. ID | EX ME! WB
 bnez x12, LOOP IF | ID EX ME! WB!
 Completely busy | N N N N N N N N |

 4.25.2 In a particular clock cycle, a pipeline stage is not doing useful work if it
is stalled or if the instruction going through that stage is not doing any
useful work there. As the diagram above shows, there are not any cycles
during which every pipeline stage is doing useful work.

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/

S-10 Chapter 4 Solutions

 4.26

 4.26.1 // EX to 1st only:
 add x11, x12, x13
 add x14, x11, x15
 add x5, x6, x7

 // MEM to 1st only:
 ld x11, 0(x12)
 add x15, x11, x13
 add x5, x6, x7

 // EX to 2nd only:
 add x11, x12, x13
 add x5, x6, x7
 add x14, x11, x12

 // MEM to 2nd only:
 ld x11, 0(x12)
 add x5, x6, x7
 add x14, x11, x13

 // EX to 1st and EX to 2nd:
 add x11, x12, x13
 add x5, x11, x15
 add x16, x11, x12

 4.26.2 // EX to 1st only: 2 nops
 add x11, x12, x13
 nop
 nop
 add x14, x11, x15
 add x5, x6, x7

 // MEM to 1st only: 2 stalls
 ld x11, 0(x12)
 nop
 nop
 add x15, x11, x13
 add x5, x6, x7

 // EX to 2nd only: 1 nop
 add x11, x12, x13
 add x5, x6, x7
 nop
 add x14, x11, x12

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/

 Chapter 4 Solutions S-11

 // MEM to 2nd only: 1 nop
 ld x11, 0(x12)
 add x5, x6, x7
 nop
 add x14, x11, x13

 // EX to 1st and EX to 2nd: 2 nops
 add x11, x12, x13
 nop
 nop
 add x5, x11, x15
 add x16, x11, x12

 4.26.3 Consider this code:

 ld x11, 0(x5) # MEM to 2nd --- one stall
 add x12, x6, x7 # EX to 1st --- two stalls
 add x13, x11, x12
 add x28, x29, x30

 If we analyze each instruction separately, we would calculate that we need
to add 3 stalls (one for a “MEM to 2nd” and two for an “EX to 1st only”.
However, as we can see below, we need only two stalls:

 ld x11, 0(x5)
 add x12, x6, x7
 nop
 nop
 add x13, x11, x12
 add x28, x29, x30

 4.26.4 Taking a weighted average of the answers from 4.26.2 gives 0.05*2 + 0.2*2
+ 0.05*1 + 0.1*1 + 0.1*2 = 0.85 stalls per instruction (on average) for a
CPI of 1.85. Th is means that 0.85/1.85 cycles, or 46%, are stalls.

 4.26.5 Th e only dependency that cannot be handled by forwarding is from the
MEM stage to the next instruction. Th us, 20% of instructions will generate
one stall for a CPI of 1.2. Th is means that 0.2 out of 1.2 cycles, or 17%, are
stalls.

 4.26.6 If we forward from the EX/MEM register only, we have the following
stalls/NOPs

 EX to 1st: 0
 MEM to 1st: 2
 EX to 2nd: 1
 MEM to 2nd: 1
 EX to 1st and 2nd: 1

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/

S-12 Chapter 4 Solutions

 Th is represents an average of 0.05*0 + 0.2*2 + 0.05*1 + 0.10*1 + 0.10*1 =
 0.65 stalls/instruction. Th us, the CPI is 1.65

 IF we forward from MEM/WB only, we have the following stalls/NOPs

 EX to 1st: 1
 MEM to 1st: 1
 EX to 2nd: 0
 MEM to 2nd: 0
 EX to 1st and 2nd: 1

 Th is represents an average of 0.05*1 + 0.2*1 + 0.1*1 = 0.35 stalls/instruction.
Th us, the CPI is 1.35.

 4.26.7

 4.26.8 CPI for full forwarding is 1.2

 CPI for “time travel” forwarding is 1.0
 clock period for full forwarding is 130
 clock period for “time travel” forwarding is 230

 Speedup = (1.2*130)/ (1*230) = 0.68 (Th at means that “time travel”
forwarding actually slows the CPU.)

 4.26.9 When considering the “EX/MEM” forwarding in 4.26.6, the “EX to 1st”
generates no stalls, but “EX to 1st and EX to 2nd” generates one stall.
However, “MEM to 1st” and “MEM to 1st and MEM to 2nd” will always
generate the same number of stalls. (All “MEM to 1st” dependencies
cause a stall, regardless of the type of forwarding. Th is stall causes the 2nd
instruction’s ID phase to overlap with the base instruction’s WB phase, in
which case no forwarding is needed.)

 4.27

 4.27.1 add x15, x12, x11
 nop
 nop
 ld x13, 4(x15)
 ld x12, 0(x2)
 nop
 or x13, x15, x13
 nop
 nop
 sd x13, 0(x15)

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/

 Chapter 4 Solutions S-13

 4.27.2 It is not possible to reduce the number of NOPs.

 4.27.3 Th e code executes correctly. We need hazard detection only to insert a
stall when the instruction following a load uses the result of the load. Th at
does not happen in this case.

 4.27.4

 Because there are no stalls in this code, PCWrite and IF/IDWrite are
always 1 and the mux before ID/EX is always set to pass the control values
through.

 (1) ForwardA = X; ForwardB = X (no instruction in EX stage yet)
 (2) ForwardA = X; ForwardB = X (no instruction in EX stage yet)
 (3) ForwardA = 0; ForwardB = 0 (no forwarding; values taken from

registers)
 (4) ForwardA = 2; ForwardB = 0 (base register taken from result of

previous instruction)
 (5) ForwardA = 1; ForwardB = 1 (base reguster taken from result of two

instructions previous)
 (6) ForwardA = 0; ForwardB = 2 (rs1 = x15 taken from register;

rs2 = x13 taken from result of 1st ld—two instructions ago)
 (7) ForwardA = 0; ForwardB = 2 (base register taken from register fi le.

Data to be written taken from previous instruction)

 4.27.5 Th e hazard detection unit additionally needs the values of rd that comes
out of the MEM/WB register. Th e instruction that is currently in the ID
stage needs to be stalled if it depends on a value produced by (or forwarded
from) the instruction in the EX or the instruction in the MEM stage. So
we need to check the destination register of these two instructions. Th e
Hazard unit already has the value of rd from the EX/MEM register as
inputs, so we need only add the value from the MEM/WB register.

 No additional outputs are needed. We can stall the pipeline using the three
output signals that we already have.

 Th e value of rd from EX/MEM is needed to detect the data hazard
between the add and the following ld . Th e value of rd form MEM/WB is
needed to detect the data hazard between the fi rst ld instruction and the
 or instruction.

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/

S-14 Chapter 4 Solutions

 4.27.6

 (1) PCWrite = 1; IF/IDWrite = 1; control mux = 0

 (2) PCWrite = 1; IF/IDWrite = 1; control mux = 0

 (3) PCWrite = 1; IF/IDWrite = 1; control mux = 0

 (4) PCWrite = 0; IF/IDWrite = 0; control mux = 1

 (5) PCWrite = 0; IF/IDWrite = 0; control mux = 1

 4.28

 4.28.1 Th e CPI increases from 1 to 1.4125.

 An incorrectly predicted branch will cause three instructions to be fl ushed: the
instructions currently in the IF, ID, and EX stages. (At this point, the branch
instruction reaches the MEM stage and updates the PC with the correct next
instruction.) In other words, 55% of the branches will result in the fl ushing of
three instructions, giving us a CPI of 1 + (1 − 0.45)(0.25)3 = 1.4125. (Just to
be clear: the always-taken predictor is correct 45% of the time, which means,
of course, that it is incorrect 1 − 0.45 = 55% of the time.)

 4.28.2 Th e CPI increases from 1 to 1.3375. (1 + (.25)(1 − .55) = 1.1125)

 4.28.3 Th e CPI increases from 1 to 1.1125. (1 + (.25)(1 − .85) = 1.0375)

 4.28.4 Th e speedup is approximately 1.019.

 Changing half of the branch instructions to an ALU instruction reduces
the percentage of instructions that are branches from 25% to 12.5%.
Because predicted and mispredicted branches are replaced equally, the
misprediction rate remains 15%. Th us, the new CPU is 1 + (.125)(1 − .85)
= 1.01875. Th is represents a speedup of 1.0375 / 1.01875 = 1.0184

 4.28.5 Th e “speedup” is .91.

 Th ere are two ways to look at this problem. One way is to look at the
two ADD instruction as a branch with an “extra” cycle. Th us, half of the
branches have 1 extra cycle; 15% of the other half have 1 extra cycles
(the pipeline fl ush); and the remaining branches (those correctly
predicted) have no extra cycles. Th is gives us a CPI of 1 + (.5)(.25)*1 +
(.5)(.25)(.15)*1 = 1.14375 and a speedup of 1.0375 / 1.14375 = .91.

 We can also treat the ADD instructions as separate instructions. Th e
modifi ed program now has 1.125n instructions (half of 25% produce

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/

 Chapter 4 Solutions S-15

an extra instruction). .125n of these 1.125n instruction (or 11.1%) are
branches. Th e CPI for this new program is 1 + (.111)(.15)*1 = 1.01665.
When we factor in the 12.5% increase in instructions, we get a speedup of
1.0375 / (1.125 * 1.01665) = .91.

 4.28.6 Th e predictor is 25% accurate on the remaining branches. We know that
80% of branches are always predicted correctly and the overall accuracy is
0.85. Th us, 0.8*1 + 0.2*x = 0.85. Solving for x shows that x = 0.25.

 4.29

 4.29.1

 4.29.2

 4.29.3 Th e fi rst few recurrences of this pattern do not have the same accuracy
as the later ones because the predictor is still warming up. To determine
the accuracy in the “steady state”, we must work through the branch
predictions until the predictor values start repeating (i.e. until the predictor
has the same value at the start of the current and the next recurrence of
the pattern).

 4.29.4 Th e predictor should be an N-bit shift register, where N is the number
of branch outcomes in the target pattern. Th e shift register should be
initialized with the pattern itself (0 for NT, 1 for T), and the prediction is
always the value in the left most bit of the shift register. Th e register should
be shift ed aft er each predicted branch.

 4.29.5 Since the predictor’s output is always the opposite of the actual outcome of
the branch instruction, the accuracy is zero.

 4.29.6 Th e predictor is the same as in part d, except that it should compare its
prediction to the actual outcome and invert (logical NOT) all the bits in
the shift register if the prediction is incorrect. Th is predictor still always
perfectly predicts the given pattern. For the opposite pattern, the fi rst
prediction will be incorrect, so the predictor’s state is inverted and aft er

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/

S-16 Chapter 4 Solutions

that the predictions are always correct. Overall, there is no warm-up
period for the given pattern, and the warm-up period for the opposite
pattern is only one branch.

 4.30

 4.30.1

 4.30.2 Th e Mux that selects the next PC must have inputs added to it. Each input
is a constant address of an exception handler. Th e exception detectors
must be added to the appropriate pipeline stage and the outputs of these
detectors must be used to control the pre-PC Mux, and also to convert to
NOPs instructions that are already in the pipeline behind the exception-
triggering instruction.

 4.30.3 Instructions are fetched normally until the exception is detected.
When the exception is detected, all instructions that are in the pipeline
aft er the fi rst instruction must be converted to NOPs. As a result, the
second instruction never completes and does not aff ect pipeline state.
In the cycle that immediately follows the cycle in which the exception
is detected, the processor will fetch the fi rst instruction of the exception
handler.

 4.30.4 Th is approach requires us to fetch the address of the handler from memory.
We must add the code of the exception to the address of the exception
vector table, read the handler’s address from memory, and jump to that
address. One way of doing this is to handle it like a special instruction that
puts the address in EX, loads the handler’s address in MEM, and sets the
PC in WB.

 4.30.5 We need a special instruction that allows us to move a value from the
(exception) Cause register to a general-purpose register. We must fi rst
save the general-purpose register (so we can restore it later), load the
Cause register into it, add the address of the vector table to it, use the
result as an address for a load that gets the address of the right exception
handler from memory, and fi nally jump to that handler.

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/

 4.
3

1
.1

 1
 2

 3
 4

 5
 6

 7
 8

 9

10
 1
1
12
 1
3
14
 1
5
16
 1
7
18
 1
9
20
 2
1
22
 2
3
24
 2
5
26
 2
7
28

 li
 x

12
,

0

 I
F

ID
 E

X
ME

 W
B

 ja
l

EN
T

 I
F

ID
 .

.
EX

 M
E

WB

 bn
e

x1
2,

 x
13

,
TO

P

 IF
 .

.
ID

 E
X

ME
 W
B

 sl
li

 x
5,

 x
12

,
3

 IF
 .

.
ID

 .
.

EX
 M
E
WB

 ad
d

x6
,

x1
0,

 x
5

 IF
 .

.
ID
 E
X
ME
 W
B

 ld
 x

7,
 0

(x
6)

 IF
 .

.
ID
 .
.
EX
 M
E
WB

 ld
 x

29
,

8(
x6

)

 IF
 .
.
ID
 E
X
ME
 W
B

 su
b

x3
0,

 x
7,

 x
29

 IF
 .
.
ID
 .
.
..
 E
X
ME
 W
B

 ad
d

x3
1,

 x
11

,
x5

 IF
 .
.
..
 I
D
EX
 M
E
WB

 sd
 x

30
,

0(
x3

1)

 IF
 .
.
..
 I
D
..
 E
X
ME
 W
B

 ad
di

 x
12

,
x1

2,
 2

 I
F
..
 I
D
EX
 M
E
WB

 bn
e

x1
2,

 x
13

,
TO

P

 I
F
..
 I
D
..
 E
X
ME
 W
B

 sl
li

 x
5,

 x
12

,
3

 I
F
..
 I
D
EX
 M
E
WB

 ad
d

x6
,

x1
0,

 x
5

 I
F
..
 I
D
..
 E
X
ME
 W
B

 ld
 x

7,
 0

(x
6)

 I
F
..
 I
D
EX
 M
E
WB

 ld
 x

29
,

8(
x6

)

 I
F
..
 I
D
..
 E
X
ME
 W
B

 su
b

x3
0,

 x
7,

 x
29

 I
F
..
 I
D
..
 E
X
ME
 W
B

 ad
d

x3
1,

 x
11

,
x5

 I
F
..
 I
D
..
 .
.
EX
 M
E
WB

 sd
 x

30
,

0(
x3

1)

 I
F
..
 .
.
ID
 E
X
ME
 W
B

 ad
di

 x
12

,
x1

2,
 2

 I
F
..
 .
.
ID
 .
.
EX
 M
E
WB

 bn
e

x1
2,

 x
13

,
TO

P

 IF
 .
.
ID
 E
X
ME
 W
B

 sl
li

 x
5,

 x
12

,
3

 IF
 .
.
ID
 .
.
EX
 M
E
WB

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/
Email: ebookyab.ir@gmail.com, Phone:+989359542944 (Telegram, WhatsApp, Eitaa)

https://ebookyab.ir/solutions-manual-computer-organization-and-design-patterson/

