## Chapter 1

## Introduction

### 1.1 Mathematical Models, Solutions, and Direction Fields

1. 



For $y>3 / 2$, the slopes are negative, and, therefore the solutions decrease. For $y<3 / 2$, the slopes are positive, and, therefore, the solutions increase. As a result, $y \rightarrow 3 / 2$ as $t \rightarrow \infty$ 2.


For $y>3 / 2$, the slopes are positive, therefore the solutions increase. For $y<3 / 2$, the slopes are negative, therefore, the solutions decrease. As a result, $y$ diverges from $3 / 2$ as $t \rightarrow \infty$ if $y(0) \neq 3 / 2$.
3.


For $y>-3 / 2$, the slopes are positive, and, therefore the solutions increase. For $y<-3 / 2$, the slopes are negative, and, therefore, the solutions decrease. As a result, $y$ diverges from the equilibrium $-3 / 2$ as $t \rightarrow \infty$
4.


For $y>-1 / 2$, the slopes are negative, therefore the solutions decrease. For $y<-1 / 2$, the slopes are positive, therefore, the solutions increase. As a result, $y \rightarrow-1 / 2$ as $t \rightarrow \infty$.


For $y>-1 / 2$, the slopes are positive, and, therefore the solutions increase. For $y<-1 / 2$, the slopes are negative, and, therefore, the solutions decrease. As a result, $y$ diverges from the equilibrium $-1 / 2$ as $t \rightarrow \infty$
6.


For $y>-3$, the slopes are positive, therefore the solutions increase. For $y<-3$, the slopes are negative, therefore, the solutions decrease. As a result, $y$ diverges from -3 as $t \rightarrow \infty$.
7. For the solutions to satisfy $y \rightarrow 3$ as $t \rightarrow \infty$, we need $y^{\prime}<0$ for $y>3$ and $y^{\prime}>0$ for $y<3$. The equation $y^{\prime}=3-y$ satisfies these conditions.
8. For the solutions to satisfy $y \rightarrow 3 / 4$ as $t \rightarrow \infty$, we need $y^{\prime}<0$ for $y>3 / 4$ and $y^{\prime}>0$ for $y<3 / 4$. The equation $y^{\prime}=3-4 y$ satisfies these conditions.
9. For the solutions to satisfy $y$ diverges from 2, we need $y^{\prime}>0$ for $y>2$ and $y^{\prime}<0$ for $y<2$. The equation $y^{\prime}=y-2$ satisfies these conditions.
10. For the solutions to satisfy $y$ diverges from $1 / 3$, we need $y^{\prime}>0$ for $y>1 / 3$ and $y^{\prime}<0$ for $y<1 / 3$. The equation $y^{\prime}=3 y-1$ satisfies these conditions.
11.

$y=0$ and $y=4$ are equilibrium solutions; $y \rightarrow 4$ if initial value is positive; $y$ diverges from 0 if initial value is negative.
12.

$y=0$ and $y=6$ are equilibrium solutions; $y$ diverges from 6 if the initial value is greater than $6 ; y \rightarrow 0$ if the initial value is less than 6 .
13.

$y=0$ is equilibrium solution; $y \rightarrow 0$ if initial value is negative; $y$ diverges from 0 if initial value is positive.
14.

$y=0$ and $y=2$ are equilibrium solutions; $y$ diverges from 0 if the initial value is negative; $y \rightarrow 2$ if the initial value is between 0 and $2 ; y$ diverges from 2 if the initial value is greater than 2 .
15. (j)
16. (c)
17. (g)
18. (b)
19. (h)
20. (e)
21.

$y$ is asymptotic to $t-3$ as $t \rightarrow \infty$
22.

$y \rightarrow 0$ as $t \rightarrow \infty$.
23.

$y \rightarrow \infty, 0$, or $-\infty$ depending on the initial value of $y$
24.

$y \rightarrow \infty$ or $-\infty$ depending whether the initial value lies above or below the line $y=-t / 2$.
25.

$y \rightarrow \infty$ or $-\infty$ or $y$ oscillates depending whether the initial value of $y$ lies above or below the sinusoidal curve.
26.

$y \rightarrow-\infty$ or is asymptotic to $\sqrt{2 t-1}$ depending on the initial value of $y$.
27.

$y \rightarrow 0$ and then fails to exist after some $t_{f} \geq 0$
28.

$y \rightarrow \infty$ or $-\infty$ depending on the initial value of $y$.
29.
(a) Using the differential equation and the given approximation, we obtain that

$$
\frac{u\left(t_{j}\right)-u\left(t_{j-1}\right)}{\Delta t}=-k\left(u\left(t_{j-1}\right)-T_{0}\right) .
$$

Multiplication by $\Delta t$ yields $u\left(t_{j}\right)-u\left(t_{j-1}\right)=-k \Delta t\left(u\left(t_{j-1}\right)-T_{0}\right)$, which gives us $u\left(t_{j}\right)=$ $(1-k \Delta t) u\left(t_{j-1}\right)+k \Delta t T_{0}$.
(b) We use induction. The statement is true for $n=1: u\left(t_{1}\right)=(1-k \Delta t) u_{0}+k T_{0} \Delta t$. Suppose the statement is true for $n$, i.e. that $u\left(t_{n}\right)=(1-k \Delta t)^{n} u_{0}+k T_{0} \Delta t \sum_{j=0}^{n-1}(1-k \Delta t)^{j}$. This implies that for $n+1$ we get

$$
\begin{gathered}
u\left(t_{n+1}\right)=(1-k \Delta t) u\left(t_{n}\right)+k \Delta t T_{0}=(1-k \Delta t)\left[(1-k \Delta t)^{n} u_{0}+k T_{0} \Delta t \sum_{j=0}^{n-1}(1-k \Delta t)^{j}\right]+k \Delta t T_{0}= \\
=(1-k \Delta t)^{n+1} u_{0}+k T_{0} \Delta t \sum_{j=0}^{n}(1-k \Delta t)^{j}
\end{gathered}
$$

which is exactly what we wanted to show. We know that $\sum_{j=0}^{n-1} r^{j}=1+r+\ldots+r^{n-1}=$ $\left(r^{n}-1\right) /(r-1)=\left(1-r^{n}\right) /(1-r)$; let $r=1-k \Delta t$, then $1-r=k \Delta t$ and we obtain that $u\left(t_{n}\right)=(1-k \Delta t)^{n} u_{0}+k T_{0} \Delta t \sum_{j=0}^{n-1}(1-k \Delta t)^{j}=(1-k \Delta t)^{n} u_{0}+T_{0}\left(1-(1-k \Delta t)^{n}\right)$.
(c) $\ln (1-k t / n)^{n}=n \ln (1-k t / n)=\ln (1-k t / n) /(1 / n)$, so using L'Hospital's rule we obtain that the limit of this sequence is the same as the limit of $(1 /(1-k t / n)) \cdot\left(k t / n^{2}\right) /\left(-1 / n^{2}\right)$, which is clearly $-k t$ as $n \rightarrow \infty$, so the sequence $(1-k t / n)^{n}$ converges to $e^{-k t}$ as $n \rightarrow \infty$. Let $\Delta t=t / n$ and we obtain immediately that $u\left(t_{n}\right)=(1-k t / n)^{n} u_{0}+T_{0}(1-(1-$ $\left.k t / n)^{n}\right) \rightarrow e^{-k t} u_{0}+T_{0}\left(1-e^{-k t}\right)=e^{-k t}\left(u_{0}-T_{0}\right)+T_{0}$ as $n \rightarrow \infty$.
30. With

$$
\phi(t)=T_{0}+\frac{k A}{k^{2}+\omega^{2}}[k \sin (\omega t)+\omega \cos (\omega t)]+c e^{-k t}
$$

it is straightforward to see that

$$
\phi^{\prime}(t)+k \phi(t)=k T_{0}+k A \sin (\omega t)
$$

31. Using the fact that

$$
R \sin (\omega t-\delta)=R \cos \delta \sin (\omega t)-R \sin \delta \cos (\omega t)
$$

where $R^{2} \cos ^{2} \delta+R^{2} \sin ^{2} \delta=R^{2}=A^{2}+B^{2}$, the desired result follows.
31. Let $R=\sqrt{A^{2}+B^{2}}$. Using the fact that $\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$, we obtain that $R \sin (\omega t-\delta)=R \cos \delta \sin \omega t-R \sin \delta \cos \omega t=A \sin \omega t+B \cos \omega t$. The $\delta$ value for which $R \cos \delta=A$ and $R \sin \delta=-B$ exists because $R^{2}=A^{2}+B^{2}$.
32.
(a) The general solution is $p(t)=900+c e^{t / 2}$. Plugging in for the initial condition, we have $p(t)=900+\left(p_{0}-900\right) e^{t / 2}$. With $p_{0}=850$, the solution is $p(t)=900-50 e^{t / 2}$. To find the time when the population becomes extinct, we need to find the time $T$ when $p(T)=0$. Therefore, $900=50 e^{T / 2}$, which implies $e^{T / 2}=18$, and, therefore, $T=2 \ln 18 \cong 5.78$ months.
(b) Using the general solution, $p(t)=900+\left(p_{0}-900\right) e^{t / 2}$, we see that the population will become extinct at the time $T$ when $900=\left(900-p_{0}\right) e^{T / 2}$. That is, $T=2 \ln \left[900 /\left(900-p_{0}\right)\right]$ months.
(c) Using the general solution, $p(t)=900+\left(p_{0}-900\right) e^{t / 2}$, we see that the population after 1 year ( 12 months) will be $p(6)=900+\left(p_{0}-900\right) e^{6}$. If we want to know the initial population which will lead to extinction after 1 year, we set $p(6)=0$ and solve for $p_{0}$. Doing so, we have $\left(900-p_{0}\right) e^{6}=900$ which implies $p_{0}=900\left(1-e^{-6}\right) \cong 897.8$.
33.
(a) The solution of the differential equation $p^{\prime}=r p$, when $p(0)=p_{0}$ is $p(t)=p_{0} e^{r t}$. If the population doubles in 20 days, then $p(20)=p_{0} e^{20 r}=2 p_{0}$, so $r=\ln 2 / 20\left(\right.$ day $\left.^{-1}\right)$.
(b) The same computation shows that $r=\ln 2 / N\left(\right.$ day $\left.^{-1}\right)$.
34.
(a) The general solution of the equation is $Q(t)=c e^{-r t}$. Given that $Q(0)=100$, we have $c=100$. Assuming that $Q(1)=82.04$, we have $82.04=100 e^{-r}$. Solving this equation for $r$, we have $r=-\ln (82.04 / 100)=.19796$ per week or $r=0.02828$ per day.
(b) Using the form of the general solution and $r$ found above, we have $Q(t)=100 e^{-0.02828 t}$.
(c) Let $T$ be the time it takes the isotope to decay to half of its original amount. From part (b), we conclude that $.5=e^{-0.2828 T}$ which implies that $T=-\ln (0.5) / 0.2828 \cong 24.5$ days.
35.
(a) The direction field is the same as in Problem 1, except the equilibrium solution (where the arrows are horizontal) is at $-m g / \gamma$. We obtain this value by setting $m v^{\prime}=0$ : $-m g-\gamma v=0$, so $v=-m g / \gamma$. The direction field shows that the velocity of a falling object does not grow without bound, it approaches this equilibrium velocity. We can also see that the smaller the drag coefficient $\gamma>0$ is, the higher the terminal velocity the object reaches.
(b) First, $m v^{\prime}=m\left(v_{0}+m g / \gamma\right)(-\gamma / m) e^{-\gamma t / m}=-\gamma\left(v_{0}+m g / \gamma\right) e^{-\gamma t / m}$. Also, $-m g-\gamma v=$ $-m g-\gamma\left(\left(v_{0}+m g \gamma\right) e^{-\gamma t / m}-m g / \gamma\right)=-\gamma\left(v_{0}+m g / \gamma\right) e^{-\gamma t / m}$. So the function satisfies the given differential equation. We can also see that $v(0)=\left(v_{0}+m g / \gamma\right)-m g / \gamma=v_{0}$.
(c) The ball reaches its maximum height when $v=0$. This will happen when $\left(v_{0}+\right.$ $m g / \gamma) e^{-\gamma t / m}=m g / \gamma$. Dividing both sides by $e^{-\gamma t / m} m g / \gamma$, we obtain $v_{0} \gamma /(m g)+1=$ $e^{\gamma t / m}$. Taking the logarithm of both sides and dividing by $\gamma / m$ we get that $t=t_{\max }=$ $(m / \gamma) \ln \left(1+\gamma v_{0} /(m g)\right)$.
(d) Using the previous parts, $\gamma=-m g / v_{\text {term }}=-0.145 \cdot 9.8 /(-33)(\mathrm{kg} / \mathrm{sec}) \approx 0.0431(\mathrm{~kg} / \mathrm{sec})$.
(e) Using the expression for the velocity, we can get the function describing the height of the thrown ball. Because $v=h^{\prime}$, we get that $h(t)=(-m / \gamma)\left(v_{0}+m g / \gamma\right) e^{-\gamma t / m}-m g t / \gamma+h_{0}+$ $(m / \gamma)\left(v_{0}+m g / \gamma\right)$, where the constant was chosen to satisfy the initial condition $h(0)=$ $h_{0}$. Using part (c), the time needed to reach maximum height is $(m / \gamma) \ln \left(1+\gamma v_{0} /(m g)\right)$, by plugging this into the height function we obtain that $h_{\max } \approx 31.16$ (m).
36.
(a) Following the discussion in the text, the equation is given by $m v^{\prime}=m g-k v^{2}$.
(b) After a long time, $v^{\prime} \rightarrow 0$. Therefore, $m g-k v^{2} \rightarrow 0$, or $v \rightarrow \sqrt{m g / k}$.
(c) We need to solve the equation $\sqrt{.005 \cdot 9.8 / k}=35$. Solving this equation, we see that $k=0.0004 \mathrm{~kg} / \mathrm{m}$.
37.
(a) Let $q(t)$ denote the amount of chemical in the pond at time $t$. The chemical $q$ will be measured in grams and the time $t$ will be measured in hours. The rate at which the chemical is entering the pond is given by 300 gallons/hour $\cdot .01$ grams/gallons $=$ $300 \cdot 10^{-2}$ grams/hour. The rate at which the chemical leaves the pond is given by 300 gallons/hour $\cdot q / 1,000,000$ grams/gallons $=300 \cdot q 10^{-6}$ grams/hour. Therefore, the differential equation is given by $d q / d t=300\left(10^{-2}-q 10^{-6}\right)$.
(b) As $t \rightarrow \infty, 10^{-2}-q 10^{-6} \rightarrow 0$. Therefore, $q \rightarrow 10^{4}$ grams. The limiting amount does not depend on the amount that was present initially.
38. The surface area of a spherical raindrop of radius $r$ is given by $S=4 \pi r^{2}$. The volume of a spherical raindrop is given by $V=4 \pi r^{3} / 3$. Therefore, we see that the surface area $S=c V^{2 / 3}$ for some constant $c$. If the raindrop evaporates at a rate proportional to its surface area, then $d V / d t=-k V^{2 / 3}$ for some $k>0$.
39.
(a) Let $q(t)$ be the total amount of the drug (in milligrams) in the body at a given time $t$ (measured in hours). The drug enters the body at the rate of $5 \mathrm{mg} / \mathrm{cm}^{3} \cdot 100 \mathrm{~cm}^{3} / \mathrm{hr}$ $=500 \mathrm{mg} / \mathrm{hr}$, and the drug leaves the body at the rate of $0.4 q \mathrm{mg} / \mathrm{hr}$. Therefore, the governing differential equation is given by $d q / d t=500-0.4 q$.
(b) If $q>1250$, then $q^{\prime}<0$. If $q<1250$, then $q^{\prime}>0$. Therefore, $q \rightarrow 1250$.

### 1.2 Linear Equations: Method of Integrating Factors

1. 

(a)

(b) All solutions seem to converge to an increasing function as $t \rightarrow \infty$.
(c) The integrating factor is $\mu(t)=e^{3 t}$. Then

$$
\begin{aligned}
& e^{3 t} y^{\prime}+3 e^{3 t} y=e^{3 t}\left(t+e^{-2 t}\right) \Longrightarrow\left(e^{3 t} y\right)^{\prime}=t e^{3 t}+e^{t} \\
& \Longrightarrow e^{3 t} y=\int\left(t e^{3 t}+e^{t}\right) d t=\frac{1}{3} t e^{3 t}-\frac{1}{9} e^{3 t}+e^{t}+c \\
& \Longrightarrow y=c e^{-3 t}+e^{-2 t}+\frac{t}{3}-\frac{1}{9} .
\end{aligned}
$$

We conclude that $y$ is asymptotic to $t / 3-1 / 9$ as $t \rightarrow \infty$.
2.
(a)

(b) All slopes eventually become positive, so all solutions will eventually increase without bound.
(c) The integrating factor is $\mu(t)=e^{-2 t}$. Then

$$
\begin{aligned}
& e^{-2 t} y^{\prime}-2 e^{-2 t} y=e^{-2 t}\left(t^{2} e^{2 t}\right) \Longrightarrow\left(e^{-2 t} y\right)^{\prime}=t^{2} \\
& \Longrightarrow e^{-2 t} y=\int t^{2} d t=\frac{t^{3}}{3}+c \\
& \Longrightarrow y=\frac{t^{3}}{3} e^{2 t}+c e^{2 t}
\end{aligned}
$$

We conclude that $y$ increases exponentially as $t \rightarrow \infty$.
3.
(a)

(b) All solutions appear to converge to the function $y(t)=1$.
(c) The integrating factor is $\mu(t)=e^{t}$. Therefore,

$$
\begin{aligned}
& e^{t} y^{\prime}+e^{t} y=t+e^{t} \Longrightarrow\left(e^{t} y\right)^{\prime}=t+e^{t} \\
& \Longrightarrow e^{t} y=\int\left(t+e^{t}\right) d t=\frac{t^{2}}{2}+e^{t}+c \\
& \Longrightarrow y=\frac{t^{2}}{2} e^{-t}+1+c e^{-t} .
\end{aligned}
$$

Therefore, we conclude that $y \rightarrow 1$ as $t \rightarrow \infty$.
4.
(a)

(b) The solutions eventually become oscillatory.
(c) The integrating factor is $\mu(t)=t$. Therefore,

$$
\begin{aligned}
& t y^{\prime}+y=3 t \cos (2 t) \Longrightarrow(t y)^{\prime}=3 t \cos (2 t) \\
& \Longrightarrow t y=\int 3 t \cos (2 t) d t=\frac{3}{4} \cos (2 t)+\frac{3}{2} t \sin (2 t)+c \\
& \Longrightarrow y=\frac{3 \cos 2 t}{4 t}+\frac{3 \sin 2 t}{2}+\frac{c}{t} .
\end{aligned}
$$

We conclude that $y$ is asymptotic to $(3 \sin 2 t) / 2$ as $t \rightarrow \infty$.
5.
(a)

(b) All slopes eventually become positive so all solutions eventually increase without bound.
(c) The integrating factor is $\mu(t)=e^{-3 t}$. Therefore,

$$
\begin{aligned}
& e^{-3 t} y^{\prime}-3 e^{-3 t} y=4 e^{-2 t} \Longrightarrow\left(e^{-3 t} y\right)^{\prime}=4 e^{-2 t} \\
& \Longrightarrow e^{-3 t} y=\int 4 e^{-2 t} d t=-2 e^{-2 t}+c \\
& \Longrightarrow y=-2 e^{t}+c e^{3 t}
\end{aligned}
$$

We conclude that $y$ increases or decreases exponentially as $t \rightarrow \infty$.
6.
(a)

(b) For $t>0$, all solutions seem to eventually converge to the function $y=0$.
(c) The integrating factor is $\mu(t)=t^{2}$. Therefore,

$$
\begin{aligned}
& t^{2} y^{\prime}+2 t y=t \sin (t) \Longrightarrow\left(t^{2} y\right)^{\prime}=t \sin (t) \\
& \Longrightarrow t^{2} y=\int t \sin (t) d t=\sin (t)-t \cos (t)+c \\
& \Longrightarrow y=\frac{\sin t-t \cos t+c}{t^{2}}
\end{aligned}
$$

We conclude that $y \rightarrow 0$ as $t \rightarrow \infty$.
7.
(a)

(b) For $t>0$, all solutions seem to eventually converge to the function $y=0$.
(c) The integrating factor is $\mu(t)=e^{t^{2}}$. Therefore, using the techniques shown above, we see that $y(t)=t^{2} e^{-t^{2}}+c e^{-t^{2}}$. We conclude that $y \rightarrow 0$ as $t \rightarrow \infty$.
8.
(a)

(b) For $t>0$, all solutions seem to eventually converge to the function $y=0$.
(c) The integrating factor is $\mu(t)=\left(1+t^{2}\right)^{2}$. Then

$$
\begin{aligned}
& \left(1+t^{2}\right)^{2} y^{\prime}+4 t\left(1+t^{2}\right) y=\frac{1}{1+t^{2}} \\
& \Longrightarrow\left(\left(1+t^{2}\right)^{2} y\right)=\int \frac{1}{1+t^{2}} d t \\
& \Longrightarrow y=(\arctan (t)+c) /\left(1+t^{2}\right)^{2}
\end{aligned}
$$

We conclude that $y \rightarrow 0$ as $t \rightarrow \infty$.
9.
(a)

(b) All slopes eventually become positive. Therefore, all solutions will increase without bound.
(c) The integrating factor is $\mu(t)=e^{t / 2}$. Therefore,

$$
\begin{array}{ll}
2 e^{t / 2} y^{\prime}+e^{t / 2} y=3 t e^{t / 2} & \Longrightarrow 2 e^{t / 2} y=\int 3 t e^{t / 2} d t=6 t e^{t / 2}-12 e^{t / 2}+c \\
\Longrightarrow y=3 t-6+c e^{-t / 2}
\end{array}
$$

We conclude that $y \rightarrow 3 t-6$ as $t \rightarrow \infty$.
10.
(a)

(b) For $y>0$, the slopes are all positive, and, therefore, the corresponding solutions increase without bound. For $y<0$ almost all solutions have negative slope and therefore decrease without bound.
(c) By dividing the equation by $t$, we see that the integrating factor is $\mu(t)=1 / t$. Therefore,

$$
\begin{aligned}
& y^{\prime} / t-y / t^{2}=t e^{-t} \Longrightarrow(y / t)^{\prime}=t e^{-t} \\
& \Longrightarrow \frac{y}{t}=\int t e^{-t} d t=-t e^{-t}-e^{-t}+c \\
& \Longrightarrow y=-t^{2} e^{-t}-t e^{-t}+c t .
\end{aligned}
$$

We conclude that $y \rightarrow \infty$ if $c>0, y \rightarrow-\infty$ if $c<0$ and $y \rightarrow 0$ if $c=0$.
11.
(a)

(b) The solution appears to be oscillatory.
(c) The integrating factor is $\mu(t)=e^{t}$. Therefore,

$$
\begin{aligned}
e^{t} y^{\prime}+e^{t} y & =5 e^{t} \sin (2 t) \Longrightarrow\left(e^{t} y\right)^{\prime}=5 e^{t} \sin (2 t) \\
\Longrightarrow e^{t} y & =\int 5 e^{t} \sin (2 t) d t=-2 e^{t} \cos (2 t)+e^{t} \sin (2 t)+c \quad \Longrightarrow y=-2 \cos (2 t)+\sin (2 t)+c e^{-t}
\end{aligned}
$$

We conclude that $y \rightarrow \sin (2 t)-2 \cos (2 t)$ as $t \rightarrow \infty$.
12.
(a)

(b) All slopes are eventually positive. Therefore, all solutions increase without bound.
(c) The integrating factor is $\mu(t)=e^{t / 2}$. Therefore,

$$
\begin{aligned}
& 2 e^{t / 2} y^{\prime}+e^{t / 2} y=3 t^{2} e^{t / 2} \Longrightarrow\left(2 e^{t / 2} y\right)^{\prime}=3 t^{2} e^{t / 2} \\
& \Longrightarrow 2 e^{t / 2} y=\int 3 t^{2} e^{t / 2} d t=6 t^{2} e^{t / 2}-24 t e^{t / 2}+48 e^{t / 2}+c \\
& \Longrightarrow y=3 t^{2}-12 t+24+c e^{-t / 2}
\end{aligned}
$$

We conclude that $y$ is asymptotic to $3 t^{2}-12 t+24$ as $t \rightarrow \infty$.
13. The integrating factor is $\mu(t)=e^{-t}$. Therefore,

$$
\left(e^{-t} y\right)^{\prime}=2 t e^{t} \Longrightarrow y=e^{t} \int 2 t e^{t} d t=2 t e^{2 t}-2 e^{2 t}+c e^{t}
$$

The initial condition $y(0)=1$ implies $-2+c=1$. Therefore, $c=3$ and $y=3 e^{t}+2(t-1) e^{2 t}$
14. The integrating factor is $\mu(t)=e^{3 t}$. Therefore,

$$
\left(e^{3 t} y\right)^{\prime}=t \Longrightarrow y=e^{-3 t} \int t d t=\frac{t^{2}}{2} e^{-3 t}+c e^{-3 t}
$$

The initial condition $y(1)=0$ implies $e^{-3 t} / 2+c e^{-3 t}=0$. Therefore, $c=-1 / 2$, and $y=\left(t^{2}-1\right) e^{-3 t} / 2$.
15. Dividing the equation by $t$, we see that the integrating factor is $\mu(t)=t^{2}$. Therefore,

$$
\left(t^{2} y\right)^{\prime}=t^{3}-t^{2}+t \Longrightarrow y=t^{-2} \int\left(t^{3}-t^{2}+t\right) d t=\left(\frac{t^{2}}{4}-\frac{t}{3}+\frac{1}{2}+\frac{c}{t^{2}}\right)
$$

The initial condition $y(1)=1 / 2$ implies $c=1 / 12$, and $y=\left(3 t^{4}-4 t^{3}+6 t^{2}+1\right) / 12 t^{2}$.
16. The integrating factor is $\mu(t)=t^{2}$. Therefore,

$$
\left(t^{2} y\right)^{\prime}=\cos (t) \Longrightarrow y=t^{-2} \int \cos (t) d t=t^{-2}(\sin (t)+c)
$$

The initial condition $y(\pi)=0$ implies $c=0$ and $y=(\sin t) / t^{2}$.
17. The integrating factor is $\mu(t)=e^{-4 t}$. Therefore,

$$
\left(e^{-4 t} y\right)^{\prime}=1 \Longrightarrow y=e^{4 t} \int 1 d t=e^{4 t}(t+c)
$$

The initial condition $y(0)=2$ implies $c=2$ and $y=(t+2) e^{4 t}$.
18. After dividing by $t$, we see that the integrating factor is $\mu(t)=t^{2}$. Therefore,

$$
\left(t^{2} y\right)^{\prime}=1 \Longrightarrow y=t^{-2} \int t \sin (t) d t=t^{-2}(\sin (t)-t \cos (t)+c)
$$

The initial condition $y(\pi / 2)=1$ implies $c=\left(\pi^{2} / 4\right)-1$ and $y=t^{-2}\left[\left(\pi^{2} / 4\right)-1-t \cos t+\sin t\right]$.
19. After dividing by $t^{3}$, we see that the integrating factor is $\mu(t)=t^{4}$. Therefore,

$$
\left(t^{4} y\right)^{\prime}=t e^{-t} \Longrightarrow y=t^{-4} \int t e^{-t} d t=t^{-4}\left(-t e^{-t}-e^{-t}+c\right)
$$

The initial condition $y(-1)=0$ implies $c=0$ and $y=-(1+t) e^{-t} / t^{4}, \quad t \neq 0$
20. After dividing by $t$, we see that the integrating factor is $\mu(t)=t e^{t}$. Therefore,

$$
\left(t e^{t} y\right)^{\prime}=t e^{t} \Longrightarrow y=t^{-1} e^{-t} \int t e^{t} d t=t^{-1} e^{-t}\left(t e^{t}-e^{t}+c\right)=t^{-1}\left(t-1+c e^{-t}\right)
$$

The initial condition $y(\ln 2)=1$ implies $c=2$ and $y=\left(t-1+2 e^{-t}\right) / t, \quad t \neq 0$.
21.
(a)


The solutions appear to diverge from an oscillatory solution. It appears that $a_{0} \approx-1$. For $a>-1$, the solutions increase without bound. For $a<-1$, the solutions decrease without bound.
(b) The integrating factor is $\mu(t)=e^{-t / 2}$. From this, we conclude that the general solution is $y(t)=(8 \sin (t)-4 \cos (t)) / 5+c e^{t / 2}$, where $c=a+4 / 5$. The solution will be sinusoidal as long as $c=0$. The initial condition for the sinusoidal behavior is $y(0)=(8 \sin (0)-$ $4 \cos (0)) / 5=-4 / 5$. Therefore, $a_{0}=-4 / 5$.
(c) $y$ oscillates for $a=a_{0}$
22.
(a)


All solutions eventually increase or decrease without bound. The value $a_{0}$ appears to be approximately $a_{0}=-3$.
(b) The integrating factor is $\mu(t)=e^{-t / 2}$, and the general solution is $y(t)=-3 e^{t / 3}+c e^{t / 2}$. The initial condition $y(0)=a$ implies $y=-3 e^{t / 3}+(a+3) e^{t / 2}$. The solution will behave like $(a+3) e^{t / 2}$. Therefore, $a_{0}=-3$.
(c) $y \rightarrow-\infty$ for $a=a_{0}$.
23.
(a)


Solutions eventually increase or decrease without bound, depending on the initial value $a_{0}$. It appears that $a_{0} \approx-1 / 8$.
(b) Dividing the equation by 3, we see that the integrating factor is $\mu(t)=e^{-2 t / 3}$. Therefore, the solution is $y=\left[(2+a(3 \pi+4)) e^{2 t / 3}-2 e^{-\pi t / 2}\right] /(3 \pi+4)$. The solution will eventually behave like $(2+a(3 \pi+4)) e^{2 t / 3} /(3 \pi+4)$. Therefore, $a_{0}=-2 /(3 \pi+4)$.
(c) $y \rightarrow 0$ for $a=a_{0}$
24.

