SOLUTIONS TO PROBLEMS 2

2.1 From (2.8),

$$
x^{2}-\left(\frac{1}{\alpha}+\frac{1}{\beta}\right) x+\left(\frac{1}{\alpha \beta}\right)=0, \text { i.e. } \alpha \beta x^{2}-(\alpha+\beta) x+1=0 .
$$

But $\alpha+\beta=2$ and $\alpha \beta=-3$, so the required equation is $3 x^{2}+2 x-1=0$.
2.2 Rearranging the expression for p, we have the equation

$$
5 x^{2}-3 p x+(p+10)=0
$$

Then using the general formula for the solution of a quadratic equation, (2.6b), real roots are only possible if $9 p^{2} \geq 20(p+10)$.
2.3 We need to solve the equation $y=m x+c$ simultaneously with the equation for the circle. Substituting for y gives, after rearrangement,

$$
\left(1+m^{2}\right) x^{2}+2 m c x+\left(c^{2}-r^{2}\right)=0,
$$

which is a quadratic of the form $\alpha x^{2}+\beta x+\gamma=0$. This will have a single real root if $\beta^{2}=4 \alpha \gamma$, i.e.

$$
4 m^{2} c^{2}=4\left(1+m^{2}\right)\left(c^{2}-r^{2}\right), \quad \text { or } \quad m= \pm\left(\frac{c^{2}-r^{2}}{r^{2}}\right)^{1 / 2}
$$

Thus there are two tangents as shown in the figure below.

2.4 The equations of the two circles are

$$
\begin{equation*}
(x-1)^{2}+(y+1)^{2}=4, \quad \text { i.e. } x^{2}+y^{2}-2 x+2 y-2=0, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{2}+y^{2}=4 \tag{2}
\end{equation*}
$$

respectively. Subtracting (2) from (1) gives

$$
\begin{equation*}
-2 x+2 y=-2, \quad \text { i.e. } y=x-1 \tag{3}
\end{equation*}
$$

and substituting in (2) gives $2 x^{2}-2 x-3=0$, with solutions

$$
x=(1+\sqrt{7}) / 2 \quad \text { and } \quad x=(1-\sqrt{7}) / 2
$$

respectively. From (3) the corresponding values of y are

$$
y=(-1+\sqrt{7}) / 2 \quad \text { and } \quad y=(-1-\sqrt{7}) / 2 .
$$

Hence the co-ordinates of the points of intersection are

$$
(x, y)=\left(\frac{1}{2}+\frac{\sqrt{7}}{2},-\frac{1}{2}+\frac{\sqrt{7}}{2}\right) \text { and }\left(\frac{1}{2}-\frac{\sqrt{7}}{2},-\frac{1}{2}-\frac{\sqrt{7}}{2}\right) .
$$

The length of the chord is $\sqrt{14}$ and the radius of the circle is 2 in each case. Hence the cosine rule (2.40a), with $a=\sqrt{14}, b=c=2$, gives $\cos A=-6 / 8$ and $A=2.42 \mathrm{rad}=139^{\circ}$.
(a) We have

$$
\left(x^{3}+x^{2}-x-4\right)=(x-1)\left(a x^{2}+b x+c\right)+R(x) .
$$

Setting $x=1$ gives $R=-3$; and multiplying out the bracket and equating powers of x gives $a=1, b=2, c=1$, so that

$$
\left(x^{3}+x^{2}-x-4\right)=(x-1)\left(x^{2}+2 x+1\right)-3 .
$$

(b) By long division,

$$
\begin{gathered}
3 x^{2}+5 x+5 \\
\left(x^{2}-2 x+3\right) \\
3 x^{4}-x^{3}+4 x^{2}+5 x+15 \\
3 x^{4}-6 x^{3}+9 x^{2} \\
\frac{5 x^{3}-5 x^{2}+5 x+15}{} \\
5 x^{3}-\frac{10 x^{2}+15 x}{5 x^{2}-10 x+15} \\
\underline{5 x^{2}-10 x+15}
\end{gathered}
$$

0
so that

$$
3 x^{4}-x^{3}+4 x^{2}+5 x+15=\left(x^{2}-2 x+3\right)\left(3 x^{2}+5 x+5\right),
$$

with the remainder $R(x)=0$. Since both $\left(x^{2}-2 x+3\right)$ and $\left(3 x^{2}+5 x+5\right)$ are of the form $a x^{2}+b x+c$ with $b^{2}<4 a c$, both of them, and hence the quartic $f(x)$ itself, have no real roots.
2.6 By inspection, one finds that $x=1$ and $x=2$ are roots. Hence, by the factor theorem,

$$
x^{4}-2 x^{3}-2 x^{2}+5 x-2=(x-1)(x-2)\left(a x^{2}+b x+c\right) .
$$

By comparing powers of x^{4} on both sides one finds $a=1$, and by comparing the constant term, $c=-1$. Hence

$$
x^{4}-2 x^{3}-2 x^{2}+5 x-2=(x-1)(x-2)\left(x^{2}+b x-1\right) .
$$

Also, comparing powers of x^{3} gives $b=1$ and hence

$$
x^{4}-2 x^{3}-2 x^{2}+5 x-2=(x-1)(x-2)\left(x^{2}+x-1\right) .
$$

The roots of $\left(x^{2}+x-1\right)$ are $(-1 \pm \sqrt{5}) / 2$, and so finally the four roots are

$$
x=1,2,(-1+\sqrt{5}) / 2,(-1-\sqrt{5}) / 2 .
$$

2.7 Using the bisection method gives,

\boldsymbol{n}	$\boldsymbol{x}_{\boldsymbol{n}}$		$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)$
1	$x_{1}=$	1.500000000	-0.12500000
2	$x_{2}=$		
3	$x_{3}=\frac{1}{2}\left(x_{1}+x_{2}\right)=$	1.600000000	0.37600000
4	$x_{4}=\frac{1}{2}\left(x_{1}+x_{3}\right)=$	1.5250000000	-0.00467200
5	$x_{5}=\frac{1}{2}\left(x_{3}+x_{4}\right)=$	1.537500000	0.05669000
6	$x_{6}=\frac{1}{2}\left(x_{4}+x_{5}\right)=$	1.531250000	0.02591100
7	$x_{7}=\frac{1}{2}\left(x_{4}+x_{6}\right)=$	1.528125000	0.01059000
8	$x_{8}=\frac{1}{2}\left(x_{4}+x_{7}\right)=$	1.526562500	0.00295500
9	$x_{9}=\frac{1}{2}\left(x_{4}+x_{8}\right)=$	1.525781250	-0.00086020
10	$x_{10}=\frac{1}{2}\left(x_{8}+x_{9}\right)=$	1.526171875	0.00104700
11	$x_{11}=\frac{1}{2}\left(x_{9}+x_{10}\right)=$	1.525976563	0.00009315

Thus the root correct to three decimal places is 1.526 .
$2.8 \quad$ (a) Setting

$$
\frac{2\left(x^{2}-9 x+11\right)}{(x-2)(x-3)(x+4)}=\frac{A}{(x-2)}+\frac{B}{(x-3)}+\frac{C}{(x+4)},
$$

gives

$$
2\left(x^{2}-9 x+11\right)=A(x-3)(x+4)+B(x-2)(x+4)+C(x-2)(x-3)
$$

and using $x=2, x=3$ and $x=-4$ in turn, yields $A=1, B=-2$ and $C=3$, so that

$$
\frac{2\left(x^{2}-9 x+11\right)}{(x-2)(x-3)(x+4)}=\frac{1}{(x-2)}-\frac{2}{(x-3)}+\frac{3}{(x+4)} .
$$

(b) Setting

$$
\frac{7 x^{2}+6 x-13}{(2 x+1)\left(x^{2}+2 x-4\right)}=\frac{A x+B}{x^{2}+2 x-4}+\frac{C}{2 x+1},
$$

gives

$$
7 x^{2}+6 x-13=(A x+B)(2 x+1)+C\left(x^{2}+2 x-4\right)
$$

and equating coefficients of powers of x yields $A=2, B=-1$ and $C=3$, so that

$$
\frac{7 x^{2}+6 x-13}{(2 x+1)\left(x^{2}+2 x-4\right)}=\frac{2 x-1}{x^{2}+2 x-4}+\frac{3}{2 x+1} .
$$

(c) Setting

$$
\frac{2\left(3 x^{2}+4 x+2\right)}{(x-1)(2 x+1)^{2}}=\frac{A}{x-1}+\frac{B}{2 x+1}+\frac{C}{(2 x+1)^{2}},
$$

gives

$$
2\left(3 x^{2}+4 x+2\right)=A(2 x+1)^{2}+B(2 x+1)(x-1)+C(x-1)
$$

and equating coefficients of powers of x yields $A=2, B=-1$ and $C=-1$, so that

$$
\frac{2\left(3 x^{2}+4 x+2\right)}{(x-1)(2 x+1)^{2}}=\frac{2}{x-1}-\frac{1}{2 x+1}-\frac{1}{(2 x+1)^{2}} .
$$

2.9 (a) Performing a long division gives

$$
\frac{x^{3}-2 x^{2}+10}{(x-1)(x+2)}=(x-3)+\frac{5 x+4}{(x-1)(x+2)} .
$$

Then, setting

$$
\frac{5 x+4}{(x-1)(x+2)}=\frac{A}{x-1}+\frac{B}{x+2}
$$

gives

$$
A(x+2)+B(x-1)=5 x+4 \Rightarrow A=3, B=2
$$

and so

$$
\frac{x^{3}-2 x^{2}+10}{(x-1)(x+2)}=(x-3)+\frac{3}{(x-1)}+\frac{2}{(x+2)} .
$$

(b) Setting

$$
\frac{3 x^{2}-5 x-4}{(x+2)\left(3 x^{2}+x-1\right)}=\frac{A}{(x+2)}+\frac{B x+C}{\left(3 x^{2}+x-1\right)},
$$

gives

$$
3 x^{2}-5 x-4=A\left(3 x^{2}+x-1\right)+(x+2)(B x+C),
$$

and choosing $x=-2$, yields $A=2$. Then

$$
3 x^{2}-5 x-4=(6+B) x^{2}+(2 B+C+2) x+(2 C-2),
$$

and equating coefficients of powers of x, gives $B=-3$ and $C=-1$. So finally,

$$
\frac{3 x^{2}-5 x-4}{(x+2)\left(3 x^{2}+x-1\right)}=\frac{2}{(x+2)}-\frac{3 x+1}{\left(3 x^{2}+x-1\right)} .
$$

(c) Setting

$$
\frac{3 x^{2}-x+2}{(x-1)(x-3)^{3}}=\frac{A}{(x-1)}+\frac{B}{(x-3)}+\frac{C}{(x-3)^{2}}+\frac{D}{(x-3)^{3}},
$$

gives

$$
3 x^{2}-x+2=A(x-3)^{3}+B(x-1)(x-3)^{2}+C(x-1)(x-3)+D(x-1) .
$$

Letting $x=1$ yields $A=-1 / 2$, and letting $x=3$ yields $D=13$. Then equating the coefficients of x^{3} gives $B=1 / 2$ and equating the constants on both sides gives $C=2$. So, finally

$$
\frac{3 x^{2}-x+2}{(x-1)(x-3)^{3}}=-\frac{1}{2(x-1)}+\frac{1}{2(x-3)}+\frac{2}{(x-3)^{2}}+\frac{13}{(x-3)^{3}} .
$$

(a) Using the double-angle formulas,

$$
\cos 4 \theta \equiv 2 \cos ^{2} 2 \theta-1 \quad \text { and } \quad \cos 2 \theta \equiv 2 \cos ^{2} \theta-1
$$

so that

$$
\cos 4 \theta \equiv 2\left(2 \cos ^{2} \theta-1\right)^{2} \equiv 8 \cos ^{4} \theta-8 \cos ^{2} \theta+1
$$

(b) Using the identities (2.36c) and (2.36d).

$$
\sin (n \theta)+\sin [(n+4) \theta] \equiv 2 \sin [(n+2) \theta] \cos (2 \theta)
$$

and

$$
\cos (n \theta)+\cos [(n+4) \theta] \equiv 2 \cos [(n+2) \theta] \cos (2 \theta),
$$

in the left-hand side of the identity gives

$$
\frac{\sin [(n+2) \theta][1+2 \cos (2 \theta)]}{\cos [(n+2) \theta][1+2 \cos (2 \theta)]} \equiv \tan [(n+2) \theta] .
$$

(c)

$$
\begin{aligned}
&\left(\frac{\sin 5 \theta}{\sin \theta}\right)^{2}-\left(\frac{\cos 5 \theta}{\cos \theta}\right)^{2}=\left(\frac{\sin 5 \theta}{\sin \theta}-\frac{\cos 5 \theta}{\cos \theta}\right)\left(\frac{\sin 5 \theta}{\sin \theta}+\frac{\cos 5 \theta}{\cos \theta}\right) \\
&=\left(\frac{\sin 5 \theta \cos \theta-\cos 5 \theta \sin \theta}{\sin \theta \cos \theta}\right)\left(\frac{\sin 5 \theta \cos \theta+\cos 5 \theta \sin \theta}{\sin \theta \cos \theta}\right) \\
&=\frac{4 \sin 4 \theta \sin 6 \theta}{\sin 2 \theta \sin 2 \theta} .
\end{aligned}
$$

Then from $(2.36 \mathrm{c}), \sin 6 \theta$ may be written

$$
\sin 6 \theta=\sin 4 \theta \cos 2 \theta+\cos 4 \theta \sin 2 \theta
$$

and using the double-angle formulas (2.37a) on the right-hand side,

$$
\sin 6 \theta=3 \sin 2 \theta-4 \sin ^{3} 2 \theta,
$$

so that

$$
\frac{4 \sin 4 \theta \sin 6 \theta}{\sin 2 \theta \sin 2 \theta}=\frac{8 \sin 2 \theta \cos 2 \theta\left(3 \sin 2 \theta-4 \sin ^{3} 2 \theta\right)}{\sin ^{2} 2 \theta}
$$

and finally

$$
\left(\frac{\sin 5 \theta}{\sin \theta}\right)^{2}-\left(\frac{\cos 5 \theta}{\cos \theta}\right)^{2}=8 \cos 2 \theta\left(3-4 \sin ^{2} 2 \theta\right)=8 \cos 2 \theta\left(4 \cos ^{2} 2 \theta-1\right) .
$$

2.11 (a) Using the double-angle formula (2.37a), we have

$$
2 \cos \theta \cos 2 \theta+2 \sin \theta \cos \theta=2 \cos \theta\left(3 \cos ^{2} \theta-1\right)
$$

so the first solution is $\cos \theta=0$, i.e. $\theta=\frac{\pi}{2}, \frac{3 \pi}{2}$. If $\cos \theta \neq 0$, we can divide by $2 \cos \theta$ to give

$$
\cos 2 \theta+\sin \theta=3 \cos ^{2} \theta-1,
$$

which again using the double-angle formula and writing everything in terms of $\sin \theta$, reduces to the quadratic $\sin ^{2} \theta+\sin \theta-1=0$ which leads directly to solutions $\theta=0.666$ and 2.475 radians.
(b) Combining the first and third terms using (2.36) gives

$$
2 \sin 2 \theta \cos \theta-2 \sin \theta \cos \theta=0
$$

so the first solution is

$$
\cos \theta=0 \Rightarrow \theta=\frac{\pi}{2}, \quad \frac{3 \pi}{2}
$$

If $\cos \theta \neq 0$, then dividing gives

$$
\sin \theta(2 \cos \theta-1)=0
$$

The two possibilities are

$$
\sin \theta=0 \Rightarrow \theta=\pi, \text { or } \cos \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3}, \frac{5 \pi}{3} .
$$

So finally

$$
\theta=\frac{\pi}{3}, \frac{\pi}{2}, \pi, \frac{3 \pi}{2} \text { and } \frac{5 \pi}{3}
$$

We have

$$
\sin k \theta-\sin \theta \equiv 2 \sin \left[\frac{1}{2}(k-1) \theta\right] \cos \left[\frac{1}{2}(k+1) \theta\right]
$$

Thus one of the two brackets must be zero. The first bracket is zero if

$$
\frac{1}{2}(k-1) \theta= \pm n \pi, \text { i.e. } k \theta= \pm n \pi+\theta \Rightarrow \theta= \pm 2 n \pi /(k-1)
$$

for all integer n and $k \neq 1$. The second bracket is zero if

$$
\frac{1}{2}(k+1) \theta= \pm \frac{1}{2}(2 n+1) \pi, \text { i.e. } k \theta= \pm(2 n+1) \pi-\theta \Rightarrow \theta= \pm(2 n+1) \pi /(k+1)
$$

for all integer n and $k \neq-1$.
2.13 From the equation of the straight line $x=(p-y \cos \theta) / \sin \theta$ and substituting into the equation for the hyperbola gives

$$
\frac{p^{2}-2 p y \cos \theta+y^{2} \cos ^{2} \theta}{a^{2} \sin ^{2} \theta}-\frac{y^{2}}{b^{2}}=1
$$

which is a quadratic in y of the form $A y^{2}+B y+C=0$, where

$$
A=\left[\frac{\cos ^{2} \theta}{a^{2} \sin ^{2} \theta}-\frac{1}{b^{2}}\right], B=-\left[\frac{2 p \cos \theta}{a^{2} \sin ^{2} \theta}\right] \text { and } C=\left[\frac{p^{2}}{a^{2} \sin ^{2} \theta}-1\right]
$$

If the line is to be a tangent, then there can be only one solution of this quadratic, the condition for which is that $B^{2}=4 A C$, i.e.

$$
\left[\frac{2 p \cos \theta}{a^{2} \sin ^{2} \theta}\right]^{2}=4\left[\frac{\cos ^{2} \theta}{a^{2} \sin ^{2} \theta}-\frac{1}{b^{2}}\right]\left[\frac{p^{2}}{a^{2} \sin ^{2} \theta}-1\right]
$$

which after simplifying gives $a^{2} \sin ^{2} \theta-b^{2} \cos ^{2} \theta=p^{2}$, as required.

The y-co-ordinate of the point of intersection is $y=-B / 2 A$, i.e.

$$
y=\frac{2 p \cos \theta}{2 a^{2} \sin ^{2} \theta} \cdot \frac{a^{2} b^{2} \sin ^{2} \theta}{b^{2} \cos ^{2} \theta-a^{2} \sin ^{2} \theta}=\frac{-b^{2} \cos \theta}{p}
$$

and hence

$$
x=\frac{p-y \cos \theta}{\sin \theta}=\frac{a^{2} \sin \theta}{p} .
$$

2.14 Equation (2.37c) may be used on the left-hand side to give

$$
\begin{aligned}
\frac{1+\sin \theta+\cos \theta}{1+\sin \theta-\cos \theta} \equiv & \frac{1+(2 \sin \theta / 2 \cos \theta / 2)+\left(2 \cos ^{2} \theta / 2-1\right)}{1+(2 \sin \theta / 2 \cos \theta / 2)-\left(1-2 \sin ^{2} \theta / 2\right)} \\
& \equiv \frac{\cos \theta / 2}{\sin \theta / 2} \equiv \frac{2 \cos ^{2} \theta / 2}{2 \sin \theta / 2 \cos \theta / 2} \equiv \frac{1+\cos \theta}{\sin \theta} .
\end{aligned}
$$

2.15 From the sine rule

$$
\frac{a}{\sin A}=\frac{b}{\sin B} \Rightarrow \sin A=\frac{a \sin B}{b} .
$$

So $A=\arcsin [5 \sin (0.5) / 4]=0.643 \mathrm{rad}=36.84^{\circ}$ and hence $C=1.999 \mathrm{rad}=114.51^{0}$. Again using the sine rule, $c=b \sin C / \sin B=7.59 \mathrm{~cm}$.
2.16 The lengths of the sides are: $a=B C=\sqrt{(5-7)^{2}+(6-2)^{2}}=\sqrt{20}$ and likewise $b=A C=\sqrt{37}$ and $c=A B=\sqrt{25}$. Then using the cosine rule

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}=\frac{21}{5 \sqrt{37}},
$$

giving $A=0.809 \mathrm{rad}=46.35^{\circ}$. In a similar way, $B=1.391 \mathrm{rad}=79.70^{\circ}$ and $C=0.942 \mathrm{rad}=53.97^{0}$.
2.17 For $n=0$ the results are trivial. So we just need to show that if both are true for any $n \geq 0$ they are true for $m=n+1$. Suppose both results are true for n. Then

$$
\begin{aligned}
\sin [(2 m+1) \theta]= & \sin [(2 n+1) \theta+2 \theta] \\
& =\sin [(2 n+1) \theta] \cos 2 \theta+\cos [(2 n+1) \theta] \sin 2 \theta \\
& =\sin [(2 n+1) \theta]\left[1-2 \sin ^{2} \theta\right]+\left[\frac{\cos [(2 n+1) \theta]}{\cos \theta}\right] 2 \sin \theta \cos ^{2} \theta,
\end{aligned}
$$

which is a polynomial in $\sin \theta$ since both $\sin [(2 n+1) \theta]$ and $\cos [(2 n+1) \theta] / \cos \theta$ are polynomials and $\cos ^{2} \theta=1-\sin ^{2} \theta$. Similarly,

