1-1.

The shaft is supported by a smooth thrust bearing at B and a journal bearing at C. Determine the resultant internal loadings acting on the cross section at E.

SOLUTION

Support Reactions: We will only need to compute \mathbf{C}_{y} by writing the moment equation of equilibrium about B with reference to the free-body diagram of the entire shaft, Fig. a.

$$
\varsigma+\Sigma M_{B}=0 ; \quad C_{y}(8)+400(4)-800(12)=0 \quad C_{y}=1000 \mathrm{lb}
$$

Internal Loadings: Using the result for \mathbf{C}_{y}, section $D E$ of the shaft will be considered. Referring to the free-body diagram, Fig. b,

$$
\begin{aligned}
& \xrightarrow{+} \Sigma F_{x}=0 ; \quad N_{E}=0 \\
& +\uparrow \Sigma F_{y}=0 ; \quad V_{E}+1000-800=0 \quad V_{E}=-200 \mathrm{lb} \\
& \varsigma+\Sigma M_{E}=0 ; 1000(4)-800(8)-M_{E}=0 \\
& \qquad M_{E}=-2400 \mathrm{lb} \cdot \mathrm{ft}=-2.40 \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

Ans.
Ans.

Ans.
The negative signs indicates that \mathbf{V}_{E} and \mathbf{M}_{E} act in the opposite sense to that shown on the free-body diagram.

(a)

(b)

Ans:

$N_{E}=0, V_{E}=-200 \mathrm{lb}, M_{E}=-2.40 \mathrm{kip} \cdot \mathrm{ft}$

1-2.

Determine the resultant internal normal and shear force in the member at (a) section $a-a$ and (b) section $b-b$, each of which passes through the centroid A. The $500-\mathrm{lb}$ load is applied along the centroidal axis of the member.

SOLUTION

(a)

$$
\begin{array}{ll}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{a}-500=0 \\
& N_{a}=500 \mathrm{lb} \\
+\downarrow \Sigma F_{y}=0 ; & V_{a}=0
\end{array}
$$

(b)

$$
\begin{array}{ll}
\searrow^{+} \Sigma F_{x}=0 ; & N_{b}-500 \cos 30^{\circ}=0 \\
& N_{b}=433 \mathrm{lb} \\
+\nearrow \Sigma F_{y}=0 ; & V_{b}-500 \sin 30^{\circ}=0 \\
& V_{b}=250 \mathrm{lb}
\end{array}
$$

Ans.
Ans.

Ans.

Ans.

Ans:
(a) $N_{a}=500 \mathrm{lb}, V_{a}=0$,
(b) $N_{b}=433 \mathrm{lb}, V_{b}=250 \mathrm{lb}$

1-3.
Determine the resultant internal loadings acting on section $b-b$ through the centroid C on the beam.

SOLUTION

Support Reaction:

$$
\begin{gathered}
\varsigma+\Sigma M_{A}=0 ; \quad N_{B}\left(9 \sin 30^{\circ}\right)-\frac{1}{2}(900)(9)(3)=0 \\
N_{B}=2700 \mathrm{lb}
\end{gathered}
$$

Equations of Equilibrium: For section $b-b$

$$
\begin{gathered}
+\Sigma F_{x}=0 ; \quad V_{b-b}+\frac{1}{2}(300)(3) \sin 30^{\circ}-2700=0 \\
V_{b-b}=2475 \mathrm{lb}=2.475 \mathrm{kip}
\end{gathered}
$$

$$
\begin{array}{r}
+\uparrow \Sigma F_{y}=0 ; \quad N_{b-b}-\frac{1}{2}(300)(3) \cos 30^{\circ}=0 \\
N_{b-b}=389.7 \mathrm{lb}=0.390 \mathrm{kip}
\end{array}
$$

$$
\varsigma+\Sigma M_{C}=0 ; \quad 2700\left(3 \sin 30^{\circ}\right)
$$

$$
-\frac{1}{2}(300)(3)(1)-M_{b-b}=0
$$

$$
M_{b-b}=3600 \mathrm{lb} \cdot \mathrm{ft}=3.60 \mathrm{kip} \cdot \mathrm{ft}
$$

Ans.

Ans.

> Ans:
> $V_{b-b}=2.475 \mathrm{kip}$,
> $N_{b-b}=0.390 \mathrm{kip}$,
> $M_{b-b}=3.60 \mathrm{kip} \cdot \mathrm{ft}$

*1-4.

The shaft is supported by a smooth thrust bearing at A and a smooth journal bearing at B. Determine the resultant internal loadings acting on the cross section at C.

SOLUTION

Support Reactions: We will only need to compute \mathbf{B}_{y} by writing the moment equation of equilibrium about A with reference to the free-body diagram of the entire shaft, Fig. a.
$\varsigma+\Sigma M_{A}=0 ; \quad B_{y}(4.5)-600(2)(2)-900(6)=0 \quad B_{y}=1733.33 \mathrm{~N}$
Internal Loadings: Using the result of \mathbf{B}_{y}, section $C D$ of the shaft will be considered. Referring to the free-body diagram of this part, Fig. b,
$\xrightarrow{+} \Sigma F_{x}=0 ; \quad N_{C}=0$
$+\uparrow \Sigma F_{y}=0 ; \quad V_{C}-600(1)+1733.33-900=0 \quad V_{C}=-233 \mathrm{~N}$
$\varsigma+\Sigma M_{C}=0 ; \quad 1733.33(2.5)-600(1)(0.5)-900(4)-M_{C}=0$

$$
M_{C}=433 \mathrm{~N} \cdot \mathrm{~m}
$$

Ans.
Ans.

Ans.
The negative sign indicates that \mathbf{V}_{C} acts in the opposite sense to that shown on the free-body diagram.

(a)

(b)

> Ans:
> $N_{C}=0$,
> $V_{C}=-233 \mathrm{~N}$, $M_{C}=433 \mathrm{~N} \cdot \mathrm{~m}$

1-5.
Determine the resultant internal loadings acting on the cross section at point B.

SOLUTION

$$
\begin{array}{ll}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{B}=0 \\
+\uparrow \Sigma F_{y}=0 ; & V_{B}-\frac{1}{2}(48)(12)=0 \\
& V_{B}=288 \mathrm{lb} \\
\complement_{+}+M_{B}=0 ; & -M_{B}-\frac{1}{2}(48)(12)(4)=0 \\
& M_{B}=-1152 \mathrm{lb} \cdot \mathrm{ft}=-1.15 \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans:
$N_{B}=0$,
$V_{B}=288 \mathrm{lb}$,
$M_{B}=-1.15 \mathrm{kip} \cdot \mathrm{ft}$

1-6.

Determine the resultant internal loadings on the cross section at point D.

SOLUTION

Support Reactions: Member $B C$ is the two force member.
$\varsigma+\Sigma M_{A}=0 ; \quad \frac{4}{5} F_{B C}(1.5)-1.875(0.75)=0$

$$
F_{B C}=1.1719 \mathrm{kN}
$$

$$
+\uparrow \Sigma F_{y}=0 ; \quad A_{y}+\frac{4}{5}(1.1719)-1.875=0
$$

$$
A_{y}=0.9375 \mathrm{kN}
$$

$\xrightarrow{+} \Sigma F_{x}=0 ; \quad \frac{3}{5}(1.1719)-A_{x}=0$

$$
A_{x}=0.7031 \mathrm{kN}
$$

Equations of Equilibrium: For point D

$$
\begin{array}{cc}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{D}-0.7031=0 \\
& N_{D}=0.703 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; & 0.9375-0.625-V_{D}=0 \\
& V_{D}=0.3125 \mathrm{kN}
\end{array}
$$

$\varsigma_{\hookrightarrow}+\Sigma M_{D}=0 ; \quad M_{D}+0.625(0.25)-0.9375(0.5)=0$
$M_{D}=0.3125 \mathrm{kN} \cdot \mathrm{m}$

Ans.

Ans.

Ans.

Ans:
$N_{D}=0.703 \mathrm{kN}$,
$V_{D}=0.3125 \mathrm{kN}$,
$M_{D}=0.3125 \mathrm{kN} \cdot \mathrm{m}$

1-7.
Determine the resultant internal loadings at cross sections at points E and F on the assembly.

SOLUTION

Support Reactions: Member $B C$ is the two-force member.

$$
\begin{gathered}
\varsigma+\Sigma M_{A}=0 ; \quad \frac{4}{5} F_{B C}(1.5)-1.875(0.75)=0 \\
F_{B C}=1.1719 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; \quad A_{y}+\frac{4}{5}(1.1719)-1.875=0 \\
A_{y}=0.9375 \mathrm{kN} \\
\xrightarrow[\rightarrow]{ } \Sigma F_{x}=0 ; \quad \frac{3}{5}(1.1719)-A_{x}=0 \\
A_{x}=0.7031 \mathrm{kN}
\end{gathered}
$$

Equations of Equilibrium: For point F

$$
\begin{array}{cc}
+\swarrow \Sigma F_{x^{\prime}}=0 ; & N_{F}-1.1719=0 \\
& N_{F}=1.17 \mathrm{kN} \\
\nwarrow+\Sigma F_{y^{\prime}}=0 ; & V_{F}=0 \\
\varsigma+\Sigma M_{F}=0 ; & M_{F}=0
\end{array}
$$

Equations of Equilibrium: For point E

$$
\begin{gathered}
\pm \Sigma F_{x}=0 ; \quad N_{E}-\frac{3}{5}(1.1719)=0 \\
N_{E}=0.703 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; \quad V_{E}-0.625+\frac{4}{5}(1.1719)=0 \\
V_{E}=-0.3125 \mathrm{kN} \\
\varsigma+\Sigma M_{E}=0 ; \quad-M_{E}-0.625(0.25)+\frac{4}{5}(1.1719)(0.5)=0 \\
M_{E}=0.3125 \mathrm{kN} \cdot \mathrm{~m}
\end{gathered}
$$

Ans.
Ans.
Ans.

Ans.

Ans.

Ans.

Negative sign indicates that \mathbf{V}_{E} acts in the opposite direction to that shown on FBD.
Ans:
$N_{F}=1.17 \mathrm{kN}$,
$V_{F}=0$,
$M_{F}=0$,
$N_{E}=0.703 \mathrm{kN}$,
$V_{E}=-0.3125 \mathrm{kN}$,
$M_{E}=0.3125 \mathrm{kN} \cdot \mathrm{m}$

*1-8.

The beam supports the distributed load shown. Determine the resultant internal loadings acting on the cross section at point C. Assume the reactions at the supports A and B are vertical.

SOLUTION

Support Reactions: Referring to the FBD of the entire beam, Fig. a,
$\varsigma+\Sigma M_{A}=0 ; \quad B_{y}(6)-\frac{1}{2}(4)(6)(2)=0 \quad B_{y}=4.00 \mathrm{kN}$
Internal Loadings: Referring to the FBD of the right segment of the beam sectioned through C, Fig. b,

$$
\begin{array}{ll}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{C}=0 \\
+\uparrow \Sigma F_{y}=0 ; & V_{C}+4.00-\frac{1}{2}(3)(4.5)=0 \quad V_{C}=2.75 \mathrm{kN} \\
\mathrm{C}+\Sigma M_{C}=0 ; & 4.00(4.5)-\frac{1}{2}(3)(4.5)(1.5)-M_{C}=0 \\
& M_{C}=7.875 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.
Ans.

Ans.

Ans:
$N_{C}=0$,
$V_{C}=2.75 \mathrm{kN}$,
$M_{C}=7.875 \mathrm{kN} \cdot \mathrm{m}$

1-9.

The beam supports the distributed load shown. Determine the resultant internal loadings acting on the cross section at point D. Assume the reactions at the supports A and B are vertical.

SOLUTION

Support Reactions: Referring to the FBD of the entire beam, Fig. a,
$\varsigma+\Sigma M_{A}=0 ; \quad B_{y}(6)-\frac{1}{2}(4)(6)(2)=0 \quad B_{y}=4.00 \mathrm{kN}$
Internal Loadings: Referring to the FBD of the right segment of the beam sectioned through D, Fig. b,

$$
\begin{array}{ll}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{D}=0 \\
+\uparrow \Sigma F_{y}=0 ; & V_{D}+4.00-\frac{1}{2}(1.00)(1.5)=0 \quad V_{D}=-3.25 \mathrm{kN} \\
C+\Sigma M_{D}=0 ; & 4.00(1.5)-\frac{1}{2}(1.00)(1.5)(0.5)-M_{D}=0 \\
& M_{D}=5.625 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.
Ans.

The negative sign indicates that \mathbf{V}_{D} acts in the sense opposite to that shown on the FBD.

(b)

```
Ans:
\(N_{D}=0\),
\(V_{D}=-3.25 \mathrm{kN}\),
\(M_{D}=5.625 \mathrm{kN} \cdot \mathrm{m}\)
```


1-10.

The boom $D F$ of the jib crane and the column $D E$ have a uniform weight of $50 \mathrm{lb} / \mathrm{ft}$. If the supported load is 300 lb , determine the resultant internal loadings in the crane on cross sections at points A, B, and C.

SOLUTION

Equations of Equilibrium: For point A

$$
\begin{array}{cc}
\pm \Sigma F_{x}=0 ; & N_{A}=0 \\
+\uparrow \Sigma F_{y}=0 ; & V_{A}-150-300=0 \\
& V_{A}=450 \mathrm{lb} \\
\varsigma+\Sigma M_{A}=0 ; & -M_{A}-150(1.5)-300(3)=0 \\
& M_{A}=-1125 \mathrm{lb} \cdot \mathrm{ft}=-1.125 \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.

Ans.

Negative sign indicates that M_{A} acts in the opposite direction to that shown on FBD.
Equations of Equilibrium: For point B

$$
\begin{array}{cc}
\pm \Sigma F_{x}=0 ; & N_{B}=0 \\
+\uparrow \Sigma F_{y}=0 ; & V_{B}-550-300=0 \\
& V_{B}=850 \mathrm{lb} \\
\varsigma+\Sigma M_{B}=0 ; & -M_{B}-550(5.5)-300(11)=0 \\
& M_{B}=-6325 \mathrm{lb} \cdot \mathrm{ft}=-6.325 \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.

Ans.
Negative sign indicates that M_{B} acts in the opposite direction to that shown on FBD.
Equations of Equilibrium: For point C

$$
\begin{array}{cc}
\pm \Sigma F_{x}=0 ; & V_{C}=0 \\
+\uparrow \Sigma F_{y}=0 ; & -N_{C}-250-650-300=0 \\
& N_{C}=-1200 \mathrm{lb}=-1.20 \mathrm{kip} \\
C+\Sigma M_{C}=0 ; & -M_{C}-650(6.5)-300(13)=0 \\
& M_{C}=-8125 \mathrm{lb} \cdot \mathrm{ft}=-8.125 \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.

Ans.

Negative signs indicate that N_{C} and M_{C} act in the opposite direction to that shown on FBD.

Ans:
$N_{A}=0, V_{A}=450 \mathrm{lb}, M_{A}=-1.125 \mathrm{kip} \cdot \mathrm{ft}$,
$N_{B}=0, V_{B}=850 \mathrm{lb}, M_{B}=-6.325 \mathrm{kip} \cdot \mathrm{ft}$,
$V_{C}=0, N_{C}=-1.20 \mathrm{kip}, M_{C}=-8.125 \mathrm{kip} \cdot \mathrm{ft}$

1-11.

Determine the resultant internal loadings acting on the cross sections at points D and E of the frame.

SOLUTION

Member $A G$:

For point D :

$$
\begin{array}{ll}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{D}+527.33=0 \\
& N_{D}=-527 \mathrm{lb} \\
+\uparrow \Sigma F_{y}=0 ; & -373.20-V_{D}=0 \\
& V_{D}=-373 \mathrm{lb} \\
\varsigma+\Sigma M_{D}=0 ; & M_{D}+373.20(1)=0 \\
& M_{D}=-373 \mathrm{lb} \cdot \mathrm{ft}
\end{array}
$$

For point E :

$$
\begin{array}{ll}
+\Sigma F_{x}=0 ; & 150 \sin 30^{\circ}-N_{E}=0 \\
& N_{E}=75.0 \mathrm{lb} \\
+\uparrow \Sigma F_{y}=0 ; & V_{E}-75(3)-150 \cos 30^{\circ}=0 \\
& V_{E}=355 \mathrm{lb} \\
\varsigma+\Sigma M_{E}=0 ; & -M_{E}-75(3)(1.5)-150 \cos 30^{\circ}(3)=0 ; \\
& M_{E}=-727 \mathrm{lb} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

> Ans:
> $N_{D}=-527 \mathrm{lb}$,
> $V_{D}=-373 \mathrm{lb}$,
> $M_{D}=-373 \mathrm{lb} \cdot \mathrm{ft}$,
> $N_{E}=75.0 \mathrm{lb}$,
> $V_{E}=355 \mathrm{lb}$,
> $M_{E}=-727 \mathrm{lb} \cdot \mathrm{ft}$
*1-12.
Determine the resultant internal loadings acting on the cross sections at points F and G of the frame.

SOLUTION

Member $A G$:

$\varsigma+\Sigma M_{A}=0 ; \quad \frac{4}{5} F_{B F}(3)-300(5)-150 \cos 30^{\circ}(7)=0$

$$
F_{B F}=1003.9 \mathrm{lb}
$$

For point F :

$$
\begin{array}{ll}
+\nearrow \Sigma F_{x^{\prime}}=0 ; & V_{F}=0 \\
\nwarrow+\Sigma F_{y^{\prime}}=0 ; & N_{F}-1003.9=0 \\
& N_{F}=1004 \mathrm{lb} \\
\zeta+\Sigma M_{F}=0 ; & M_{F}=0
\end{array}
$$

For point G :

$$
\begin{array}{ll}
\pm \Sigma F_{x}=0 ; & N_{G}-150 \sin 30^{\circ}=0 \\
& N_{G}=75.0 \mathrm{lb} \\
+\uparrow \Sigma F_{y}=0 ; & V_{G}-75(1)-150 \cos 30^{\circ}=0 \\
& V_{G}=205 \mathrm{lb} \\
C+\Sigma M_{G}=0 ; & -M_{G}-75(1)(0.5)-150 \cos 30^{\circ}(1)=0 \\
& M_{G}=-167 \mathrm{lb} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.
Ans.

Ans.

Ans.

Ans.

> Ans:
> $V_{F}=0$,
> $N_{F}=1004 \mathrm{lb}$,
> $M_{F}=0$,
> $N_{G}=75.0 \mathrm{lb}$,
> $V_{G}=205 \mathrm{lb}$,
> $M_{G}=-167 \mathrm{lb} \cdot \mathrm{ft}$

1-13.

The blade of the hacksaw is subjected to a pretension force of $F=100 \mathrm{~N}$. Determine the resultant internal loadings acting on section $a-a$ that passes through point D.

SOLUTION

Internal Loadings: Referring to the free-body diagram of the section of the hacksaw shown in Fig. a,
$\pm \Sigma F_{x}=0 ;$
$N_{a-a}+100=0$
$N_{a-a}=-100 \mathrm{~N}$
$+\uparrow \Sigma F_{y}=0 ;$
$V_{a-a}=0$
$\zeta+\Sigma M_{D}=0 ;$

Ans.
Ans.
Ans.

(a)

Ans:
$N_{a-a}=-100 \mathrm{~N}, V_{a-a}=0, M_{a-a}=-15 \mathrm{~N} \cdot \mathrm{~m}$

1-14.

The blade of the hacksaw is subjected to a pretension force of $F=100 \mathrm{~N}$. Determine the resultant internal loadings acting on section $b-b$ that passes through point D.

SOLUTION

Internal Loadings: Referring to the free-body diagram of the section of the hacksaw shown in Fig. a,

$$
\begin{array}{lll}
\Sigma F_{x^{\prime}}=0 ; & N_{b-b}+100 \cos 30^{\circ}=0 & N_{b-b}=-86.6 \mathrm{~N} \\
\Sigma F_{y^{\prime}}=0 ; & V_{b-b}-100 \sin 30^{\circ}=0 & V_{b-b}=50 \mathrm{~N} \\
\varsigma+\Sigma M_{D}=0 ; & -M_{b-b}-100(0.15)=0 & M_{b-b}=-15 \mathrm{~N} \cdot \mathrm{~m}
\end{array}
$$

Ans.
The negative sign indicates that \mathbf{N}_{b-b} and \mathbf{M}_{b-b} act in the opposite sense to that shown on the free-body diagram.

(a)

> Ans:
> $N_{b-b}=-86.6 \mathrm{~N}, V_{b-b}=50 \mathrm{~N}$,
> $M_{b-b}=-15 \mathrm{~N} \cdot \mathrm{~m}$

1-15.

The beam supports the triangular distributed load shown. Determine the resultant internal loadings on the cross section at point C. Assume the reactions at the supports A and B are vertical.

SOLUTION

Support Reactions: Referring to the FBD of the entire beam, Fig. a,
$C_{C}+\Sigma M_{B}=0 ; \quad \frac{1}{2}(0.8)(18)(6)-\frac{1}{2}(0.8)(9)(3)-A_{y}(18)=0 \quad A_{y}=1.80 \mathrm{kip}$
Internal Loadings: Referring to the FBD of the left beam segment sectioned through point C, Fig. b,

$$
\begin{array}{ll}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{C}=0 \\
+\uparrow \Sigma F_{y}=0 ; & 1.80-\frac{1}{2}(0.5333)(12)-V_{C}=0 \quad V_{C}=-1.40 \mathrm{kip} \\
\varsigma+\Sigma M_{C}=0 ; & M_{C}+\frac{1}{2}(0.5333)(12)(4)-1.80(12)=0
\end{array}
$$

$$
M_{C}=8.80 \mathrm{kip} \cdot \mathrm{ft}
$$

Ans.
Ans.

The negative sign indicates that \mathbf{V}_{C} acts in the sense opposite to that shown on the FBD.

Ans:
$N_{C}=0$,
$V_{C}=-1.40$ kip,
$M_{C}=8.80 \mathrm{kip} \cdot \mathrm{ft}$
*1-16.
The beam supports the distributed load shown. Determine the resultant internal loadings on the cross section at points D and E. Assume the reactions at the supports A and B are vertical.

SOLUTION

Support Reactions: Referring to the FBD of the entire beam, Fig. a,
$\varsigma+\Sigma M_{B}=0 ; \quad \frac{1}{2}(0.8)(18)(6)-\frac{1}{2}(0.8)(9)(3)-A_{y}(18)=0 \quad A_{y}=1.80 \mathrm{kip}$
Internal Loadings: Referring to the FBD of the left segment of the beam section through D, Fig. b,

$$
\begin{array}{ll}
\xrightarrow{\rightarrow} \Sigma F_{x}=0 ; & N_{D}=0 \\
+\uparrow \Sigma F_{y}=0 ; & 1.80-\frac{1}{2}(0.2667)(6)-V_{D}=0 \quad V_{D}=1.00 \mathrm{kip} \\
\mathrm{C}+\Sigma M_{D}=0 ; & M_{D}+\frac{1}{2}(0.2667)(6)(2)-1.80(6)=0 \\
& \\
M_{D}=9.20 \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.

(a)

Referring to the FBD of the right segment of the beam sectioned through E, Fig. c,

$\xrightarrow{+} \Sigma F_{x}=0 ;$	$N_{E}=0$	Ans.	
$+\uparrow \Sigma F_{y}=0 ;$	$V_{E}-\frac{1}{2}(0.4)(4.5)=0$	$V_{E}=0.900 \mathrm{kip}$	Ans.
$\varsigma+\Sigma M_{E}=0 ;$	$-M_{E}-\frac{1}{2}(0.4)(4.5)(1.5)=0$	$M_{E}=-1.35 \mathrm{kip} \cdot \mathrm{ft}$	Ans.

The negative sign indicates that \mathbf{M}_{E} act in the sense opposite to that shown in Fig. c.

(b)

(c)

> Ans:
> $N_{D}=0$,
> $V_{D}=1.00 \mathrm{kip}$,
> $M_{D}=9.20 \mathrm{kip} \cdot \mathrm{ft}$,
> $N_{E}=0$,
> $V_{E}=0.900 \mathrm{kip}$,
> $M_{E}=-1.35 \mathrm{kip} \cdot \mathrm{ft}$

1-17.

The shaft is supported at its ends by two bearings A and B and is subjected to the forces applied to the pulleys fixed to the shaft. Determine the resultant internal loadings acting on the cross section at point D. The $400-\mathrm{N}$ forces act in the $-z$ direction and the $200-\mathrm{N}$ and $80-\mathrm{N}$ forces act in the $+y$ direction. The journal bearings at A and B exert only y and z components of force on the shaft.

SOLUTION

Support Reactions:

Equations of Equilibrium: For point D
$\Sigma F_{x}=0 ;$

$$
\left(N_{D}\right)_{x}=0
$$

$$
\Sigma F_{y}=0 ; \quad\left(V_{D}\right)_{y}-314.29+160=0
$$

$$
\left(V_{D}\right)_{y}=154 \mathrm{~N}
$$

$$
\Sigma F_{z}=0 ; \quad 171.43+\left(V_{D}\right)_{z}=0
$$

$$
\left(V_{D}\right)_{z}=-171 \mathrm{~N}
$$

$\Sigma M_{x}=0 ;$

$$
\left(T_{D}\right)_{x}=0
$$

$$
\Sigma M_{y}=0 ; \quad 171.43(0.55)+\left(M_{D}\right)_{y}=0
$$

$$
\left(M_{D}\right)_{y}=-94.3 \mathrm{~N} \cdot \mathrm{~m}
$$

$\Sigma M_{z}=0 ; \quad 314.29(0.55)-160(0.15)+\left(M_{D}\right)_{z}=0$

$$
\left(M_{D}\right)_{z}=-149 \mathrm{~N} \cdot \mathrm{~m}
$$

$$
\begin{aligned}
& \Sigma M_{z}=0 ; \quad 160(0.4)+400(0.7)-A_{y}(1.4)=0 \\
& A_{y}=245.71 \mathrm{~N} \\
& \Sigma F_{y}=0 ; \quad-245.71-B_{y}+400+160=0 \\
& B_{y}=314.29 \mathrm{~N} \\
& \Sigma M_{y}=0 ; \quad 800(1.1)-A_{z}(1.4)=0 \quad A_{z}=628.57 \mathrm{~N} \\
& \Sigma F_{z}=0 ; \quad B_{z}+628.57-800=0 \quad B_{z}=171.43 \mathrm{~N}
\end{aligned}
$$

Ans.

Ans:
$\left(N_{D}\right)_{x}=0$,
$\left(V_{D}\right)_{y}=154 \mathrm{~N}$,
$\left(V_{D}\right)_{z}=-171 \mathrm{~N}$,
$\left(T_{D}\right)_{x}=0$,
$\left(M_{D}\right)_{y}=-94.3 \mathrm{~N} \cdot \mathrm{~m}$,
$\left(M_{D}\right)_{z}=-149 \mathrm{~N} \cdot \mathrm{~m}$

1-18.

The shaft is supported at its ends by two bearings A and B and is subjected to the forces applied to the pulleys fixed to the shaft. Determine the resultant internal loadings acting on the cross section at point C. The $400-\mathrm{N}$ forces act in the $-z$ direction and the $200-\mathrm{N}$ and $80-\mathrm{N}$ forces act in the $+y$ direction. The journal bearings at A and B exert only y and z components of force on the shaft.

SOLUTION

Support Reactions:

$$
\begin{aligned}
& \Sigma M_{z}=0 ; \quad 160(0.4)+400(0.7)-A_{y}(1.4)=0 \\
& A_{y}=245.71 \mathrm{~N} \\
& \Sigma F_{y}=0 ; \quad-245.71-B_{y}+400+160=0 \\
& B_{y}=314.29 \mathrm{~N} \\
& \Sigma M_{y}=0 ; \quad 800(1.1)-A_{z}(1.4)=0 \quad A_{z}=628.57 \mathrm{~N} \\
& \Sigma F_{z}=0 ; \quad B_{z}+628.57-800=0 \quad B_{z}=171.43 \mathrm{~N}
\end{aligned}
$$

Equations of Equilibrium: For point C

$$
\begin{array}{cc}
\Sigma F_{x}=0 ; & \left(N_{C}\right)_{x}=0 \\
\Sigma F_{y}=0 ; & -245.71+\left(V_{C}\right)_{y}=0 \\
& \left(V_{C}\right)_{y}=-246 \mathrm{~N} \\
\Sigma F_{z}=0 ; & 628.57-800+\left(V_{C}\right)_{z}=0 \\
& \left(V_{C}\right)_{z}=-171 \mathrm{~N} \\
\Sigma M_{x}=0 ; & \left(T_{C}\right)_{x}=0 \\
\Sigma M_{y}=0 ; & \left(M_{C}\right)_{y}-628.57(0.5)+800(0.2)=0 \\
& \left(M_{C}\right)_{y}=-154 \mathrm{~N} \cdot \mathrm{~m} \\
\Sigma M_{z}=0 ; & \left(M_{C}\right)_{z}-245.71(0.5)=0 \\
& \\
& \left(M_{C}\right)_{z}=-123 \mathrm{~N} \cdot \mathrm{~m}
\end{array}
$$

Ans.

$$
\begin{aligned}
& \text { Ans: } \\
& \left(N_{C}\right)_{x}=0, \\
& \left(V_{C}\right)_{y}=-246 \mathrm{~N}, \\
& \left(V_{C}\right)_{z}=-171 \mathrm{~N}, \\
& \left(T_{C}\right)_{x}=0, \\
& \left(M_{C}\right)_{y}=-154 \mathrm{~N} \cdot \mathrm{~m}, \\
& \left(M_{C}\right)_{z}=-123 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

1-19.

The hand crank that is used in a press has the dimensions shown. Determine the resultant internal loadings acting on the cross section at point A if a vertical force of 50 lb is applied to the handle as shown. Assume the crank is fixed to the shaft at B.

SOLUTION

$$
\begin{array}{lll}
\Sigma F_{x}=0 ; & \left(V_{A}\right)_{x}=0 \\
\Sigma F_{y}=0 ; & \left(N_{A}\right)_{y}+50 \sin 30^{\circ}=0 ; & \left(N_{A}\right)_{y}=-25 \mathrm{lb} \\
\Sigma F_{z}=0 ; & \left(V_{A}\right)_{z}-50 \cos 30^{\circ}=0 ; & \left(V_{A}\right)_{z}=43.3 \mathrm{lb} \\
\Sigma M_{x}=0 ; & \left(M_{A}\right)_{x}-50 \cos 30^{\circ}(7)=0 ; & \left(M_{A}\right)_{x}=303 \mathrm{lb} \cdot \mathrm{in} . \\
\Sigma M_{y}=0 ; & \left(T_{A}\right)_{y}+50 \cos 30^{\circ}(3)=0 ; & \left(T_{A}\right)_{y}=-130 \mathrm{lb} \cdot \mathrm{in} . \\
\Sigma M_{z}=0 ; & \left(M_{A}\right)_{z}+50 \sin 30^{\circ}(3)=0 ; & \left(M_{A}\right)_{z}=-75 \mathrm{lb} \cdot \mathrm{in} .
\end{array}
$$

Ans.
Ans.
Ans.
Ans.

Ans.
Ans.

> Ans:
> $\left(V_{A}\right)_{x}=0$,
> $\left(N_{A}\right)_{y}=-25 \mathrm{lb}$,
> $\left(V_{A}\right)_{z}=43.3 \mathrm{lb}$,
> $\left(M_{A}\right)_{x}=303 \mathrm{lb} \cdot \mathrm{in} .$,
> $\left(T_{A}\right)_{y}=-130 \mathrm{lb} \cdot \mathrm{in} .$,
> $\left(M_{A}\right)_{z}=-75 \mathrm{lb} \cdot \mathrm{in}$.

*1-20.

Determine the resultant internal loadings acting on the cross section at point C in the beam. The load D has a mass of 300 kg and is being hoisted by the motor M with constant velocity.

SOLUTION

\[

\]

Ans.
Ans.

Ans.

[^0]
1-21.

Determine the resultant internal loadings acting on the cross section at point E. The load D has a mass of 300 kg and is being hoisted by the motor M with constant velocity.

SOLUTION

$$
\begin{array}{ll}
\xrightarrow{+} \Sigma F_{x}=0 ; & N_{E}+2943=0 \\
& N_{E}=-2.94 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; & -2943-V_{E}=0 \\
& V_{E}=-2.94 \mathrm{kN} \\
\varsigma+\Sigma M_{E}=0 ; & M_{E}+2943(1)=0 \\
& M_{E}=-2.94 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Ans.

Ans.

Ans:

$N_{E}=-2.94 \mathrm{kN}$,
$V_{E}=-2.94 \mathrm{kN}$,
$M_{E}=-2.94 \mathrm{kN} \cdot \mathrm{m}$
$M_{E}=-2.94 \mathrm{kN} \cdot \mathrm{m}$

1-22.

The metal stud punch is subjected to a force of 120 N on the handle. Determine the magnitude of the reactive force at the $\operatorname{pin} A$ and in the short link $B C$. Also, determine the resultant internal loadings acting on the cross section at point D.

SOLUTION

Member:

$$
\begin{array}{ll}
\varsigma+\Sigma M_{A}=0 ; & F_{B C} \cos 30^{\circ}(50)-120(500)=0 \\
& F_{B C}=1385.6 \mathrm{~N}=1.39 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; & A_{y}-1385.6-120 \cos 30^{\circ}=0 \\
& A_{y}=1489.56 \mathrm{~N} \\
\pm \Sigma F_{x}=0 ; & A_{x}-120 \sin 30^{\circ}=0 ; \quad A_{x}=60 \mathrm{~N} \\
F_{A}=\sqrt{1489.56^{2}+60^{2}} & \\
=1491 \mathrm{~N}=1.49 \mathrm{kN}
\end{array}
$$

Segment:

$$
\begin{array}{ll}
\nwarrow^{+} \Sigma F_{x^{\prime}}=0 ; & N_{D}-120=0 \\
& N_{D}=120 \mathrm{~N} \\
+\nearrow \Sigma F_{y^{\prime}}=0 ; & V_{D}=0 \\
\varsigma+\Sigma M_{D}=0 ; & M_{D}-120(0.3)=0 \\
& M_{D}=36.0 \mathrm{~N} \cdot \mathrm{~m}
\end{array}
$$

Ans.

Ans.

Ans.
Ans.

Ans.

1-23.

Determine the resultant internal loadings acting on the cross section at point E of the handle arm, and on the cross section of the short link $B C$.

SOLUTION

Member:
$\zeta+\Sigma M_{A}=0 ; \quad F_{B C} \cos 30^{\circ}(50)-120(500)=0$
$F_{B C}=1385.6 \mathrm{~N}=1.3856 \mathrm{kN}$

Segment:

Σ
x^{\prime}
$=0 ;$
$N_{E}=0$
$\Sigma+\Sigma F_{y^{\prime}}=0 ;$
$V_{E}-120=0 ;$
$V_{E}=120 \mathrm{~N}$
$\varsigma+\Sigma M_{E}=0 ;$
$M_{E}-120(0.4)=0 ;$
$M_{E}=48.0 \mathrm{~N} \cdot \mathrm{~m}$
Short link:
$亡 \Sigma F_{x}=0 ; \quad V=0$
$+\uparrow \Sigma F_{y}=0 ; \quad 1.3856-N=0 ; \quad N=1.39 \mathrm{kN}$
$\varsigma+\Sigma M_{H}=0 ; \quad M=0$

Ans.
Ans.
Ans.

Ans.
Ans.
Ans.

Ans.

Ans:

$N_{E}=0, V_{E}=120 \mathrm{~N}, M_{E}=48.0 \mathrm{~N} \cdot \mathrm{~m}$, Short link: $V=0, N=1.39 \mathrm{kN}, M=0$

*1-24.

Determine the resultant internal loadings acting on the cross section at point C. The cooling unit has a total weight of 52 kip and a center of gravity at G.

SOLUTION

From FBD (a)

$$
\varsigma+\Sigma M_{A}=0 ; \quad T_{B}(6)-52(3)=0 ; \quad T_{B}=26 \mathrm{kip}
$$

From FBD (b)

$$
\varsigma+\Sigma M_{D}=0 ; \quad T_{E} \sin 30^{\circ}(6)-26(6)=0 ; \quad T_{E}=52 \mathrm{kip}
$$

From FBD (c)

\[

\]

Ans.

Ans.

Ans.

[^1]
1-25.

Determine the resultant internal loadings acting on the cross section at points B and C of the curved member.

SOLUTION

From FBD (a)

$$
\begin{array}{ll}
\nearrow+\Sigma F_{x^{\prime}}=0 ; & 400 \cos 30^{\circ}+300 \cos 60^{\circ}-V_{B}=0 \\
& V_{B}=496 \mathrm{lb} \\
\nwarrow+\Sigma F_{y^{\prime}}=0 ; & N_{B}+400 \sin 30^{\circ}-300 \sin 60^{\circ}=0 \\
& N_{B}=59.80=59.8 \mathrm{lb} \\
\varsigma+\Sigma M_{O}=0 ; & 300(2)-59.80(2)-M_{B}=0 \\
& M_{B}=480 \mathrm{lb} \cdot \mathrm{ft}
\end{array}
$$

From FBD (b)

$$
\begin{array}{ll}
\nearrow+\Sigma F_{x^{\prime}}=0 ; & 400 \cos 45^{\circ}+300 \cos 45^{\circ}-N_{C}=0 \\
& N_{C}=495 \mathrm{lb} \\
\nwarrow+\Sigma F_{y^{\prime}}=0 ; & -V_{C}+400 \sin 45^{\circ}-300 \sin 45^{\circ}=0 \\
& V_{C}=70.7 \mathrm{lb} \\
C+\Sigma M_{O}=0 ; & 300(2)+495(2)-M_{C}=0 \\
& M_{C}=1590 \mathrm{lb} \cdot \mathrm{ft}=1.59 \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.

(a)

Ans.

Ans.

Ans.

Ans.

[^0]: Ans:
 $N_{C}=-2.94 \mathrm{kN}$,
 $V_{C}=2.94 \mathrm{kN}$,
 $M_{C}=-1.47 \mathrm{kN} \cdot \mathrm{m}$

[^1]: Ans:
 $N_{C}=-45.0 \mathrm{kip}$,
 $V_{C}=0$,
 $M_{C}=9.00 \mathrm{kip} \cdot \mathrm{ft}$

